Quantitative Analysis for ROS-Producing Activity and Regulation of Plant NADPH Oxidases in HEK293T Cells.
Human embryonic kidney 293T (HEK293T)
Luminol
NADPH oxidase
Respiratory oxidase homolog (RBOH)
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
3
6
2022
pubmed:
4
6
2022
medline:
9
6
2022
Statut:
ppublish
Résumé
Reactive oxygen species (ROS) produced by plant NADPH oxidases, respiratory burst oxidase homologs (RBOHs), play key roles in biotic and abiotic stress responses and development in plants. While properly controlled amounts of ROS function as signaling molecules, excessive accumulation of ROS can cause undesirable side effects due to their ability to oxidize DNA, lipids, and proteins. To limit the damaging consequences of unrestricted ROS accumulation, RBOH activity is tightly controlled by post-translational modifications (PTMs) and protein-protein interactions. In order to analyze these elaborate regulatory mechanisms, it is crucial to quantitatively assess the ROS-producing activity of RBOHs. Given the high endogenous ROS generation in plants, however, it can be challenging in plant cells to measure ROS production derived from specific RBOHs and to analyze the contribution of regulatory events for their activation and inactivation. Here we describe human embryonic kidney 293T (HEK293T) cells as a heterologous expression system and a useful tool to quantitatively monitor ROS production by RBOHs. This system permits the reconstitution of regulatory events to dissect the effects of Ca
Identifiants
pubmed: 35657515
doi: 10.1007/978-1-0716-2469-2_8
doi:
Substances chimiques
Reactive Oxygen Species
0
NADPH Oxidases
EC 1.6.3.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
107-122Informations de copyright
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236. https://doi.org/10.1146/annurev-arplant-042817-040322
doi: 10.1146/annurev-arplant-042817-040322
pubmed: 29489394
Kärkönen A, Kuchitsu K (2015) Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112:22–32. https://doi.org/10.1016/j.phytochem.2014.09.016
doi: 10.1016/j.phytochem.2014.09.016
pubmed: 25446232
Groom QJ, Torres MA, Fordham-Skelton AP et al (1996) rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522. https://doi.org/10.1046/j.1365-313X.1996.10030515.x
doi: 10.1046/j.1365-313X.1996.10030515.x
pubmed: 8811865
Keller T, Damude HG, Werner D et al (1998) A plant homolog of the neutrophil NADPH oxidase gp91
doi: 10.1105/tpc.10.2.255
pubmed: 9490748
pmcid: 143990
Suzuki N, Miller G, Morales J et al (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699. https://doi.org/10.1016/j.pbi.2011.07.014
doi: 10.1016/j.pbi.2011.07.014
pubmed: 21862390
Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol 38:1118–1126. https://doi.org/10.1093/oxfordjournals.pcp.a029096
doi: 10.1093/oxfordjournals.pcp.a029096
pubmed: 9399435
Zhang H, Zhang F, Xia Y et al (2010) Excess copper induces production of hydrogen peroxide in the leaf of Elsholtzia haichowensis through apoplastic and symplastic CuZn-superoxide dismutase. J Hazard Mater 178:834–843. https://doi.org/10.1016/j.jhazmat.2010.02.014
doi: 10.1016/j.jhazmat.2010.02.014
pubmed: 20202748
Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214. https://doi.org/10.1111/nph.15488
doi: 10.1111/nph.15488
pubmed: 30222198
Chapman JM, Muhlemann JK, Gayomba SR et al (2019) RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol 32:370–396. https://doi.org/10.1021/acs.chemrestox.9b00028
doi: 10.1021/acs.chemrestox.9b00028
pubmed: 30781949
pmcid: 6857786
Hu CH, Wang PQ, Zhang PP et al (2020) NADPH Oxidases: The vital performers and center hubs during plant growth and signaling. Cells 9:437. https://doi.org/10.3390/cells9020437
doi: 10.3390/cells9020437
pmcid: 7072856
Kadota Y, Liebrand TWH, Goto Y et al (2019) Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol 221:2160–2175. https://doi.org/10.1111/nph.15523
doi: 10.1111/nph.15523
pubmed: 30300945
Kimura S, Hunter K, Vaahtera L et al (2020) CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell 32:1063–1080. https://doi.org/10.1105/tpc.19.00525
doi: 10.1105/tpc.19.00525
pubmed: 32034035
pmcid: 7145479
Shen J, Zhang J, Zhou M et al (2020) Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32:1000–1017. https://doi.org/10.1105/tpc.19.00826
doi: 10.1105/tpc.19.00826
pubmed: 32024687
pmcid: 7145499
Lee DH, Lal NK, Lin ZJD et al (2020) Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat Commun 11:1838. https://doi.org/10.1038/s41467-020-15601-5
doi: 10.1038/s41467-020-15601-5
pubmed: 32296066
pmcid: 7160206
Kaya H, Iwano M, Takeda S et al (2015) Apoplastic ROS production upon pollination by RbohH and RbohJ in Arabidopsis. Plant Signal Behav 10:3–6. https://doi.org/10.4161/15592324.2014.989050
doi: 10.4161/15592324.2014.989050
Fichman Y, Miller G, Mittler R (2019) Whole-plant live imaging of reactive oxygen species. Mol Plant 12:1203–1210. https://doi.org/10.1016/j.molp.2019.06.003
doi: 10.1016/j.molp.2019.06.003
pubmed: 31220601
Trujillo M (2016) Analysis of the lmmunity-related oxidative bursts by a luminol-based assay. Methods Mol Biol 1398:323–329. https://doi.org/10.1007/978-1-4939-3356-3_26
doi: 10.1007/978-1-4939-3356-3_26
pubmed: 26867635
Camejo D, Guzmán-Cedeño Á, Moreno A (2016) Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol Biochem 103:10–23. https://doi.org/10.1016/j.plaphy.2016.02.035
doi: 10.1016/j.plaphy.2016.02.035
pubmed: 26950921
Mignolet-Spruyt L, Xu E, Idänheimo N et al (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844. https://doi.org/10.1093/jxb/erw080
doi: 10.1093/jxb/erw080
pubmed: 26976816
Shang-Guan K, Wang M, Htwe NMPS et al (2018) Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations. Plant Physiol 176:2543–2556. https://doi.org/10.1104/pp.17.01637
doi: 10.1104/pp.17.01637
pubmed: 29431629
pmcid: 5841728
Bánfi B, Molnár G, Maturana A et al (2001) A Ca
doi: 10.1074/jbc.M103034200
pubmed: 11483596
Bánfi B, Malgrange B, Knisz J et al (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072. https://doi.org/10.1074/jbc.M403046200
doi: 10.1074/jbc.M403046200
pubmed: 15326186
Dao VTV, Elbatreek MH, Altenhöfer S et al (2020) Isoform-selective NADPH oxidase inhibitor panel for pharmacological target validation. Free Radic Biol Med 148:60–69. https://doi.org/10.1016/j.freeradbiomed.2019.12.038
doi: 10.1016/j.freeradbiomed.2019.12.038
pubmed: 31883469
Shiose A, Kuroda J, Tsuruya K et al (2001) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276:1417–1423. https://doi.org/10.1074/jbc.M007597200
doi: 10.1074/jbc.M007597200
pubmed: 11032835
Ogasawara Y, Kaya H, Hiraoka G et al (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca
doi: 10.1074/jbc.M708106200
pubmed: 18218618
Takeda S, Gapper C, Kaya H et al (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244. https://doi.org/10.1126/science.1152505
doi: 10.1126/science.1152505
pubmed: 18309082
Takahashi S, Kimura S, Kaya H et al (2012) Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB. J Biochem 152:37–43. https://doi.org/10.1093/jb/mvs044
doi: 10.1093/jb/mvs044
pubmed: 22528669
Kimura S, Kaya H, Kawarazaki T et al (2012) Protein phosphorylation is a prerequisite for the Ca
doi: 10.1016/j.bbamcr.2011.09.011
pubmed: 22001402
Kaya H, Nakajima R, Iwano M et al (2014) Ca
doi: 10.1105/tpc.113.120642
pubmed: 24610725
pmcid: 4001369
Kaya H, Takeda S, Kobayashi MJ et al (2019) Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases. Plant J 98:291–300. https://doi.org/10.1111/tpj.14212
doi: 10.1111/tpj.14212
pubmed: 30570803
Kawarazaki T, Kimura S, Iizuka A et al (2013) A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF. Biochim Biophys Acta 1833:2775–2780. https://doi.org/10.1016/j.bbamcr.2013.06.024
doi: 10.1016/j.bbamcr.2013.06.024
pubmed: 23872431
Kimura S, Kawarazaki T, Nibori H et al (2013) The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system. J Biochem 153:191–195. https://doi.org/10.1093/jb/mvs132
doi: 10.1093/jb/mvs132
pubmed: 23162070
Drerup MM, Schlücking K, Hashimoto K et al (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569. https://doi.org/10.1093/mp/sst009
doi: 10.1093/mp/sst009
pubmed: 23335733
Zhang X, Köster P, Schlücking K et al (2018) CBL1-CIPK26-mediated phosphorylation enhances activity of the NADPH oxidase RBOHC, but is dispensable for root hair growth. FEBS Lett 592:2582–2593. https://doi.org/10.1002/1873-3468.13187
doi: 10.1002/1873-3468.13187
pubmed: 29992537
Han JP, Köster P, Drerup MM et al (2019) Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca
doi: 10.1111/nph.15543
pubmed: 30320882
Fujita S, De Bellis D, Edel KH et al (2020) SCHENGEN receptor module drives localized ROS production and lignification in plant roots. EMBO J:1–18. https://doi.org/10.15252/embj.2019103894