Copper-induced Genotoxicity, Oxidative Stress, and Alteration in Transcriptional Level of Autophagy-associated Genes in Snakehead Fish Channa punctatus.


Journal

Biological trace element research
ISSN: 1559-0720
Titre abrégé: Biol Trace Elem Res
Pays: United States
ID NLM: 7911509

Informations de publication

Date de publication:
Apr 2023
Historique:
received: 08 03 2022
accepted: 26 05 2022
pubmed: 4 6 2022
medline: 18 2 2023
entrez: 3 6 2022
Statut: ppublish

Résumé

Copper (Cu) is an essential and important trace element for some significant life processes for most organisms. However, an excessive amount of Cu can be highly toxic. The present study was conducted to elucidate the oxidative stress-induced alteration in transcriptional level of autophagy-related genes in the liver and kidney tissue of fish Channa punctatus after treatment with three different sublethal concentrations of CuSO

Identifiants

pubmed: 35657539
doi: 10.1007/s12011-022-03301-8
pii: 10.1007/s12011-022-03301-8
doi:

Substances chimiques

Copper 789U1901C5
Superoxide Dismutase EC 1.15.1.1
Glutathione GAN16C9B8O
TOR Serine-Threonine Kinases EC 2.7.11.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2022-2035

Subventions

Organisme : Department of Higher Education, Government of U.P. India
ID : 66/2019/1864/Satter-4-2019-4(24)

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Irwin RJ, Van Mouwerik M, Stevens L, Seese MD, Basham W (1997) Environmental Contaminants Encyclopedia. National Park Service, Water Resources Division, Fort Collins, Colorado. Distributed within the Federal Government as an Electronic Document.   
Adams MS, Dillon CT, Vogt S et al (2016) Copper uptake, intracellular localization, and speciation in marine microalgae measured by synchrotron radiation X-ray fluorescence and absorption microspectroscopy. Environ Sci Technol 50:8827–8839. https://doi.org/10.1021/ACS.EST.6B00861
doi: 10.1021/ACS.EST.6B00861 pubmed: 27437565
Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877. https://doi.org/10.1016/J.CUB.2011.09.040
doi: 10.1016/J.CUB.2011.09.040 pubmed: 22075424 pmcid: 3718004
Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156. https://doi.org/10.1590/S1677-04202005000100012
doi: 10.1590/S1677-04202005000100012
De Boeck G, Meeus W, De CW, Blust R (2004) Tissue-specific Cu bioaccumulation patterns and differences in sensitivity to waterborne Cu in three freshwater fish: rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and gibel carp (Carassius auratus gibelio). Aquat Toxicol 70:179–188. https://doi.org/10.1016/J.AQUATOX.2004.07.001
doi: 10.1016/J.AQUATOX.2004.07.001 pubmed: 15550275
Deshmukh S, Marathe V (1980) Size-related toxicity of copper & mercury to Lebistes reticulatus (Peter), Labeo rohita (Ham.) & Cyprinus carpio Linn. Indian J Exp Biol 18:421–423
pubmed: 7399616
Kaur A, Kaur K (1996) Relative susceptibility of different life stages of Channa punctatus and Cyprinus carpio to nickel-chrome electroplating effluent. Bull Environ Contam Toxicol 575(57):836–841. https://doi.org/10.1007/S001289900265
doi: 10.1007/S001289900265
Oruc HH (2010) Fungicides and their effects on animals. In: Carisse O (ed.) Fungicides, In-Tech Publishers, London, U.K, pp 349–362. https://doi.org/10.5772/555
Eyckmans M, Celis N, Horemans N et al (2011) Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquat Toxicol 103:112–120. https://doi.org/10.1016/J.AQUATOX.2011.02.010
doi: 10.1016/J.AQUATOX.2011.02.010 pubmed: 21419094
Grosell MH, Hogstrand C, Wood CM (1997) Cu uptake and turnover in both Cu-acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 4:257–276. https://doi.org/10.1016/S0166-445X(96)00843-0
doi: 10.1016/S0166-445X(96)00843-0
Grosell M, Wood CM (2002) Copper uptake across rainbow trout gills: mechanisms of apical entry. J Exp Biol 205:1179–1188. https://doi.org/10.1242/JEB.205.8.1179
doi: 10.1242/JEB.205.8.1179 pubmed: 11919277
Lauren DJ, McDonald DG (2011) Acclimation to copper by rainbow trout, Salmo gairdneri: biochemistry. Can J Feries Aquat Sci 44:105–111. https://doi.org/10.1139/F87-013
doi: 10.1139/F87-013
Malhotra N, Ger TR, Uapipatanakul B et al (2020) Review of copper and copper nanoparticle toxicity in fish. Nanomaterials 10:1–28. https://doi.org/10.3390/nano10061126
doi: 10.3390/nano10061126
Rajeshkumar S, Li X (2018) Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol Rep 5:288. https://doi.org/10.1016/J.TOXREP.2018.01.007
doi: 10.1016/J.TOXREP.2018.01.007 pubmed: 29511642 pmcid: 5835493
Thounaojam TC, Panda P, Mazumdar P et al (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39. https://doi.org/10.1016/J.PLAPHY.2012.01.006
doi: 10.1016/J.PLAPHY.2012.01.006 pubmed: 22306354
Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38. https://doi.org/10.1016/J.TIBS.2010.07.007
doi: 10.1016/J.TIBS.2010.07.007 pubmed: 20728362
Scherz-Shouval R, Shvets E, Fass E et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760. https://doi.org/10.1038/SJ.EMBOJ.7601623
doi: 10.1038/SJ.EMBOJ.7601623 pubmed: 17347651 pmcid: 1847657
Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523–540. https://doi.org/10.1042/BJ20111451
doi: 10.1042/BJ20111451 pubmed: 22187934
Palacio-Betancur I, Palacio-Baena JA, Camargo-Guerrero M (2009) Micronuclei test application to wild tropical ichthyic species common in two lentic environments of the low zones in Colombia. Actual Biol 31:67–77
doi: 10.17533/udea.acbi.4730
Rubinsztein DC, Ravikumar B, Acevedo-Arozena A et al (2005) Dyneins, autophagy, aggregation and neurodegeneration. Autophagy 1:177–178. https://doi.org/10.4161/AUTO.1.3.2050
doi: 10.4161/AUTO.1.3.2050 pubmed: 16874055
Avagliano L, Danti L, Doi P et al (2013) Autophagy in placentas from acidotic newborns: an immunohistochemical study of LC3 expression. Placenta 34:1091–1094. https://doi.org/10.1016/J.PLACENTA.2013.09.004
doi: 10.1016/J.PLACENTA.2013.09.004 pubmed: 24070620
Karim MR, Kawanago H, Kadowaki M (2014) A quick signal of starvation induced autophagy: transcription versus post-translational modification of LC3. Anal Biochem 465:28–34. https://doi.org/10.1016/J.AB.2014.07.007
doi: 10.1016/J.AB.2014.07.007 pubmed: 25062852
Chen D, Zhang Z, Yao H et al (2015) Effects of atrazine and chlorpyrifos on oxidative stress-induced autophagy in the immune organs of common carp (Cyprinus carpio L.). Fish Shellfish Immunol 44:12–20. https://doi.org/10.1016/J.FSI.2015.01.014
doi: 10.1016/J.FSI.2015.01.014 pubmed: 25652291
Awasthi Y, Ratn A, Prasad R et al (2019) A protective study of curcumin associated with Cr6+ induced oxidative stress, genetic damage, transcription of genes related to apoptosis and histopathology of fish, Channa punctatus (Bloch, 1793). Environ Toxicol Pharmacol 71:1–10. https://doi.org/10.1016/j.etap.2019.103209
doi: 10.1016/j.etap.2019.103209
APHA, AWWA, WEF (2012) Standard Methods for the Examination of Water and Wastewater, 22nd ed. APHA 800 I Street, NW, Washington, DC 20001–3710
Burress RM (1975) Enhancing bass production by the use of fish toxicants. In: Stroud RH, RH and Clepper H (eds) Black bass biology and management, Sport fishing Institute, Washington, DC pp 480–488. http://pubs.er.usgs.gov/publication/85606
Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719. https://doi.org/10.1021/es60130a004
doi: 10.1021/es60130a004
Palermo FF, Risso WE, Simonato JD, Martinez CBR (2015) Bioaccumulation of nickel and its biochemical and genotoxic effects on juveniles of the neotropical fish Prochilodus lineatus. Ecotoxicol Environ Saf 116:19–28. https://doi.org/10.1016/j.ecoenv.2015.02.032
doi: 10.1016/j.ecoenv.2015.02.032 pubmed: 25744913
Satheeshkumar P, Ananthan G, Senthil Kumar D, Jagadeesan L (2012) Haematology and biochemical parameters of different feeding behaviour of teleost fishes from Vellar estuary, India. Comp Clin Pathol 21:1187–1191. https://doi.org/10.1007/s00580-011-1259-7
doi: 10.1007/s00580-011-1259-7
Schmid W (1975) The micronucleus test. Mutat Res Mutagen Relat Subj 31:9–15. https://doi.org/10.1016/0165-1161(75)90058-8
doi: 10.1016/0165-1161(75)90058-8
Fenech M, Jarvis LR, Morley AA (1988) Preliminary studies on scoring micronuclei by computerized image analysis. Mutat Res Mutagen Relat Subj 203:33–38. https://doi.org/10.1016/0165-1161(88)90005-2
doi: 10.1016/0165-1161(88)90005-2
Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21(2):2–130. PMID: 6490072.
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
doi: 10.1016/S0076-6879(84)05016-3 pubmed: 6727660
Flohé L, Günzler AW (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–120. https://doi.org/10.1016/S0076-6879(84)05015-1
doi: 10.1016/S0076-6879(84)05015-1 pubmed: 6727659
Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480. https://doi.org/10.1016/s0021-9258(19)41206-4
doi: 10.1016/s0021-9258(19)41206-4 pubmed: 237922
Ellman GL (1959) Tissue Su ~ yd ~ l Groups. Arch Biochem Biophys 82:70–77
doi: 10.1016/0003-9861(59)90090-6 pubmed: 13650640
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262 pubmed: 11846609
Awasthi Y, Ratn A, Prasad R et al (2018) An in vivo analysis of Cr 6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquat Toxicol 200:158–167. https://doi.org/10.1016/j.aquatox.2018.05.001
doi: 10.1016/j.aquatox.2018.05.001 pubmed: 29753883
Kumar M, Gupta N, Ratn A, Awasthi Y, Prasad R, Trivedi A, Trivedi SP (2020) Biomonitoring of heavy metals in river ganga water, sediments, plant, and fishes of different trophic levels. Biol trace elem res 193(2):536–547. https://doi.org/10.1007/s12011-019-01736-0
Singh D, Nath K, Trivedi S, Sharma Y (2008) Impact of copper on haematological profile of freshwater fish, Channa punctatus. J Environ Biol 29:253–257
pubmed: 18831385
Liao J, Yang F, Chen H et al (2019) Effects of copper on oxidative stress and autophagy in hypothalamus of broilers. Ecotoxicol Environ Saf 185:109710. https://doi.org/10.1016/J.ECOENV.2019.109710
doi: 10.1016/J.ECOENV.2019.109710 pubmed: 31563750
Zhong C-C, Zhao T, Hogstrand C et al (2021) Copper (Cu) induced changes of lipid metabolism through oxidative stress-mediated autophagy and Nrf2/PPARγ pathways. J Nutr Biochem:108883. https://doi.org/10.1016/J.JNUTBIO.2021.108883
Wang Y, Zhao H, Shao Y et al (2017) Copper or/and arsenic induce oxidative stress-cascaded, nuclear factor kappa B-dependent inflammation and immune imbalance, trigging heat shock response in the kidney of chicken. Oncotarget 8:98103–98116. https://doi.org/10.18632/ONCOTARGET.21463
doi: 10.18632/ONCOTARGET.21463 pubmed: 29228677 pmcid: 5716717
Liu H, Guo H, Jian Z et al (2020) Copper induces oxidative stress and apoptosis in the mouse liver. Oxid Med Cell Longev 2020. https://doi.org/10.1155/2020/1359164
Trivedi PS, Ratn A, Yashika A et al (2021) In vivo assessment of dichlorvos induced histological and biochemical impairments coupled with expression of p53 responsive apoptotic genes in the liver and kidney of fish, Channa punctatus (Bloch, 1793). Comp Biochem Physiol C Toxicol Pharmacol 245:1–15. https://doi.org/10.1016/J.CBPC.2021.109032
doi: 10.1016/J.CBPC.2021.109032
Ratn A, Prasad R, Awasthi Y et al (2018) Zn 2+ induced molecular responses associated with oxidative stress, DNA damage and histopathological lesions in liver and kidney of the fish, Channa punctatus (Bloch, 1793). Ecotoxicol Environ Saf 151:10–20. https://doi.org/10.1016/j.ecoenv.2017.12.058
doi: 10.1016/j.ecoenv.2017.12.058 pubmed: 29304413
Sanchez W, Palluel O, Meunier L et al (2005) Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Artic Environ Toxicol Pharmacol 19:177–183. https://doi.org/10.1016/j.etap.2004.07.003
doi: 10.1016/j.etap.2004.07.003
Pandey S, Ahmad I, Parvez S et al (2001) (2001) Effect of endosulfan on antioxidants of freshwater fish Channa punctatus Bloch: 1. Protection against lipid peroxidation in liver by copper preexposure. Arch Environ Contam Toxicol 413(41):345–352. https://doi.org/10.1007/S002440010258
doi: 10.1007/S002440010258
Atif F, Parvez S, Pandey S et al (2005) Modulatory effect of cadmium exposure on deltamethrin-induced oxidative stress in Channa punctata Bloch. Arch Environ Contam Toxicol 49:371–377. https://doi.org/10.1007/S00244-003-9231-4
doi: 10.1007/S00244-003-9231-4 pubmed: 16001157
Mandil R, Prakash A, Rahal A et al (2020) In vitro and in vivo effects of flubendiamide and copper on cyto-genotoxicity, oxidative stress and spleen histology of rats and its modulation by resveratrol, catechin, curcumin and α-tocopherol. Pharmacol Toxicol 29:1–17. https://doi.org/10.1186/s40360-020-00405-6
doi: 10.1186/s40360-020-00405-6
Yadav KK, Trivedi SP (2009) Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctata. Chemosphere 77:1495–1500. https://doi.org/10.1016/j.chemosphere.2009.10.022
doi: 10.1016/j.chemosphere.2009.10.022 pubmed: 19880156
Yadav KK, Trivedi SP (2009) Chromosomal aberrations in a fish, Channa punctata after in vivo exposure to three heavy metals. Mutat Res Toxicol Environ Mutagen 678:7–12. https://doi.org/10.1016/j.mrgentox.2009.05.021
doi: 10.1016/j.mrgentox.2009.05.021
Kumar P, Kumar R, Nagpure NS et al (2012) Genotoxic and mutagenic assessment of hexavalent chromium in fish following in vivo chronic exposure. Hum Ecol Risk Assess 18:855–870. https://doi.org/10.1080/10807039.2012.688713
doi: 10.1080/10807039.2012.688713
Mahboob S, Fares H, Al-Balwai A et al (2013) Investigation on the genotoxicity of mercuric chloride to freshwater clarias gariepinus. Pak Vet J 34:100–103
Dwivedi S, Tiwari V, Trivedi SP (2015) Arsenite induced genotoxic effect and its phytoremediation by Acacia catechu leaf extract in freshwater fish, Channa punctatus (Bloch). Int J Fish Aquat Stud 2:163–165
He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67. https://doi.org/10.1146/ANNUREV-GENET-102808-114910
doi: 10.1146/ANNUREV-GENET-102808-114910 pubmed: 19653858 pmcid: 2831538
Kim YC, Guan K-L (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25. https://doi.org/10.1172/JCI73939
doi: 10.1172/JCI73939 pubmed: 25654547 pmcid: 4382265
Liao J, Yang F, Yu W et al (2020) Copper induces energy metabolic dysfunction and AMPK-mTOR pathway-mediated autophagy in kidney of broiler chickens. Ecotoxicol Environ Saf 206. https://doi.org/10.1016/J.ECOENV.2020.111366
Van Erp AC, Hoeksma D, Rebolledo RA et al (2017) The crosstalk between ROS and autophagy in the field of transplantation medicine. Oxid Med Cell Longev 2017. https://doi.org/10.1155/2017/7120962
Ye X, Zhou X-J, Zhang H (2018) Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front Immunol 9:2334. https://doi.org/10.3389/FIMMU.2018.02334
doi: 10.3389/FIMMU.2018.02334 pubmed: 30386331 pmcid: 6199349
Niture S, Lin M, Qi Q et al (2021) Role of autophagy in cadmium-induced hepatotoxicity and liver diseases. J Toxicol 2021. https://doi.org/10.1155/2021/9564297
Satyavarapu EM, Das R, Mandal C et al (2018) Autophagy-independent induction of LC3B through oxidative stress reveals its non-canonical role in anoikis of ovarian cancer cells. Cell Death Dis 910(9):1–18. https://doi.org/10.1038/s41419-018-0989-8
doi: 10.1038/s41419-018-0989-8
Sasai M, Sakaguchi N, Ma JS et al (2017) Essential role for GABARAP autophagy proteins in interferon-inducible GTPase-mediated host defense. Nat Immunol 18:899–910. https://doi.org/10.1038/NI.3767
doi: 10.1038/NI.3767 pubmed: 28604719
Johansen T, Lamark T (2020) Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J Mol Biol 432:80–103. https://doi.org/10.1016/J.JMB.2019.07.016
doi: 10.1016/J.JMB.2019.07.016 pubmed: 31310766
He C, Bartholomew CR, Zhou W, Klionsky DJ (2009) Assaying autophagic activity in transgenic GFP-Lc3 and GFP- Gabarap zebra fish embryos. Autophagy 5(4):520–526. https://doi.org/10.4161/auto.5.4.7768
Weidberg H, Shvets E, Shpilka T et al (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29:1792–1802. https://doi.org/10.1038/EMBOJ.2010.74
doi: 10.1038/EMBOJ.2010.74 pubmed: 20418806 pmcid: 2885923

Auteurs

Manoj Kumar (M)

Department of Zoology, University of Lucknow, Lucknow, 226007, India. mk2016lu@gmail.com.

Shefalee Singh (S)

Department of Zoology, University of Lucknow, Lucknow, 226007, India.

Shikha Dwivedi (S)

Department of Zoology, University of Lucknow, Lucknow, 226007, India.

Abha Trivedi (A)

Department of Animal Sciences, MJP Rohilkhand University, Bareilly, India.

Indrani Dubey (I)

Department of Zoology, DBS College, CSJM University, Kanpur, India.

Sunil P Trivedi (SP)

Department of Zoology, University of Lucknow, Lucknow, 226007, India.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH