Surface-Induced Dissociation for Protein Complex Characterization.
High-resolution mass spectrometry
Native mass spectrometry
Protein complex
Protein mass spectrometry
Proteoform identification
Surface-induced dissociation
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
3
6
2022
pubmed:
4
6
2022
medline:
9
6
2022
Statut:
ppublish
Résumé
Native mass spectrometry (nMS) enables intact non-covalent complexes to be studied in the gas phase. nMS can provide information on composition, stoichiometry, topology, and, when coupled with surface-induced dissociation (SID), subunit connectivity. Here we describe the characterization of protein complexes by nMS and SID. Substructural information obtained using this method is consistent with the solved complex structure, when a structure exists. This provides confidence that the method can also be used to obtain substructural information for unknowns, providing insight into subunit connectivity and arrangements. High-energy SID can also provide information on proteoforms present. Previously SID has been limited to a few in-house modified instruments and here we focus on SID implemented within an in-house-modified Q Exactive UHMR. However, SID is currently commercially available within the Waters Select Series Cyclic IMS instrument. Projects are underway that involve the NIH-funded native MS resource (nativems.osu.edu), instrument vendors, and third-party vendors, with the hope of bringing the technology to more platforms and labs in the near future. Currently, nMS resource staff can perform SID experiments for interested research groups.
Identifiants
pubmed: 35657596
doi: 10.1007/978-1-0716-2325-1_15
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
211-237Subventions
Organisme : NIGMS NIH HHS
ID : P41 GM128577
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Ben-Nissan G, Sharon M (2018) The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes. Curr Opin Chem Biol 42:25–33. https://doi.org/10.1016/j.cbpa.2017.10.026
doi: 10.1016/j.cbpa.2017.10.026
pubmed: 29128665
Heck AJR, van den Heuvel RHH (2004) Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 23:368–389. https://doi.org/10.1002/mas.10081
doi: 10.1002/mas.10081
pubmed: 15264235
Liko I, Allison TM, Hopper JT, Robinson CV (2016) Mass spectrometry guided structural biology. Curr Opin Struct Biol 40:136–144. https://doi.org/10.1016/j.sbi.2016.09.008
doi: 10.1016/j.sbi.2016.09.008
pubmed: 27721169
Eschweiler JD, Kerr R, Rabuck-Gibbons J, Ruotolo BT (2017) Sizing up protein–ligand complexes: the rise of structural mass spectrometry approaches in the pharmaceutical sciences. Annu Rev Anal Chem 10:25–44. https://doi.org/10.1146/annurev-anchem-061516-045414
doi: 10.1146/annurev-anchem-061516-045414
Sarni S, Biswas B, Liu S et al (2020) HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal. J Biol Chem 295:14391–14401. https://doi.org/10.1074/jbc.RA120.014835
doi: 10.1074/jbc.RA120.014835
pubmed: 32817318
pmcid: 7573273
Laganowsky A, Reading E, Allison TM et al (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:172–175. https://doi.org/10.1038/nature13419
doi: 10.1038/nature13419
pubmed: 24899312
pmcid: 4087533
Vimer S, Ben-Nissan G, Morgenstern D et al (2020) Comparative structural analysis of 20S proteasome ortholog protein complexes by native mass spectrometry. ACS Cent Sci 6:573–588. https://doi.org/10.1021/acscentsci.0c00080
doi: 10.1021/acscentsci.0c00080
pubmed: 32342007
pmcid: 7181328
Melani RD, Skinner OS, Fornelli L et al (2016) Mapping proteoforms and protein complexes from king cobra venom using both denaturing and native top-down proteomics. Mol Cell Proteomics 15:2423–2434. https://doi.org/10.1074/mcp.M115.056523
doi: 10.1074/mcp.M115.056523
pubmed: 27178327
pmcid: 4937514
Franc V, Zhu J, Heck AJR (2018) Comprehensive proteoform characterization of plasma complement component C8αβγ by hybrid mass spectrometry approaches. J Am Soc Mass Spectrom 29:1099–1110. https://doi.org/10.1021/jasms.8b05825
doi: 10.1021/jasms.8b05825
pubmed: 29532326
pmcid: 6003997
Schwartz BL, Bruce JE, Anderson GA et al (1995) Dissociation of tetrameric ions of noncovalent streptavidin complexes formed by electrospray ionization. J Am Soc Mass Spectrom 6:459–465. https://doi.org/10.1016/1044-0305(95)00191-F
doi: 10.1016/1044-0305(95)00191-F
pubmed: 24214298
Hall Z, Politis A, Bush MF et al (2012) Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J Am Chem Soc 134:3429–3438. https://doi.org/10.1021/ja2096859
doi: 10.1021/ja2096859
pubmed: 22280183
Popa V, Trecroce DA, McAllister RG, Konermann L (2016) Collision-induced dissociation of electrosprayed protein complexes: an all-atom molecular dynamics model with mobile protons. J Phys Chem B 120:5114–5124. https://doi.org/10.1021/acs.jpcb.6b03035
doi: 10.1021/acs.jpcb.6b03035
pubmed: 27218677
Stiving AQ, VanAernum ZL, Busch F et al (2019) Surface-induced dissociation: an effective method for characterization of protein quaternary structure. Anal Chem 91:190–209. https://doi.org/10.1021/acs.analchem.8b05071
doi: 10.1021/acs.analchem.8b05071
pubmed: 30412666
Harvey SR, Seffernick JT, Quintyn RS et al (2019) Relative interfacial cleavage energetics of protein complexes revealed by surface collisions. Proc Natl Acad Sci 116:8143–8148. https://doi.org/10.1073/pnas.1817632116
doi: 10.1073/pnas.1817632116
pubmed: 30944216
pmcid: 6486728
Zhou M, Wysocki VH (2014) Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase. Acc Chem Res 47:1010–1018. https://doi.org/10.1021/ar400223t
doi: 10.1021/ar400223t
pubmed: 24524650
Quintyn RS, Yan J, Wysocki VH (2015) Surface-induced dissociation of homotetramers with D2 symmetry yields their assembly pathways and characterizes the effect of ligand binding. Chem Biol 22:583–592. https://doi.org/10.1016/j.chembiol.2015.03.019
doi: 10.1016/j.chembiol.2015.03.019
pubmed: 25937312
Harvey SR, VanAernum ZL, Wysocki VH (2021) Surface-induced dissociation of anionic vs cationic native-like protein complexes. J Am Chem Soc 143:7698–7706. https://doi.org/10.1021/jacs.1c00855
doi: 10.1021/jacs.1c00855
pubmed: 33983719
VanAernum ZL, Gilbert JD, Belov ME et al (2019) Surface-induced dissociation of noncovalent protein complexes in an extended mass range orbitrap mass spectrometer. Anal Chem 91:3611–3618. https://doi.org/10.1021/acs.analchem.8b05605
doi: 10.1021/acs.analchem.8b05605
pubmed: 30688442
pmcid: 6516482
VanAernum ZL (2020) Novel native mass spectrometry-based fragmentation and separation approaches for the interrogation of protein complexes. Electronic Thesis or Dissertation, The Ohio State University
Cooks RG, Terwilliger DT, Ast T et al (1975) Surface modified mass spectrometry. J Am Chem Soc 97:1583–1585. https://doi.org/10.1021/ja00839a056
Beck RD, John PS, Homer ML, Whetten RL (1991) Impact-induced cleaving and melting of alkali-halide nanocrystals. Science 253:879–883. https://doi.org/10.1126/science.253.5022.879
doi: 10.1126/science.253.5022.879
pubmed: 17751822
Laskin J, Futrell JH (2003) Surface-induced dissociation of peptide ions: kinetics and dynamics. J Am Soc Mass Spectrom 14:1340–1347. https://doi.org/10.1016/j.jasms.2003.08.004
doi: 10.1016/j.jasms.2003.08.004
pubmed: 14652183
Stone E, Gillig KJ, Ruotolo B et al (2001) Surface-induced dissociation on a MALDI-ion mobility-orthogonal time-of-flight mass spectrometer: sequencing peptides from an “in-solution” protein digest. Anal Chem 73:2233–2238. https://doi.org/10.1021/ac001430a
doi: 10.1021/ac001430a
pubmed: 11393846
Schultz DG, Hanley L (1998) Shattering of SiMe3+ during surface-induced dissociation. J Chem Phys 109:10976–10983. https://doi.org/10.1063/1.477737
doi: 10.1063/1.477737
Volný M, Elam WT, Ratner BD, Tureček F (2005) Preparative soft and reactive landing of gas-phase ions on plasma-treated metal surfaces. Anal Chem 77:4846–4853. https://doi.org/10.1021/ac0505019
doi: 10.1021/ac0505019
pubmed: 16053297
Mohammed S, Chalmers MJ, Gielbert J et al (2001) A novel tandem quadrupole mass spectrometer allowing gaseous collisional activation and surface induced dissociation. J Mass Spectrom 36:1260–1268. https://doi.org/10.1002/jms.217
doi: 10.1002/jms.217
pubmed: 11754117
Castoro JA, Nuwaysir LM, Ijames CF, Wilkins CL (1992) Comparative study of photodissociation and surface-induced dissociation by laser desorption Fourier transform mass spectrometry. Anal Chem 64:2238–2243. https://doi.org/10.1021/ac00043a010
doi: 10.1021/ac00043a010
pubmed: 1449213
Galhena AS, Dagan S, Jones CM et al (2008) Surface-induced dissociation of peptides and protein complexes in a quadrupole/time-of-flight mass spectrometer. Anal Chem 80:1425–1436. https://doi.org/10.1021/ac701782q
doi: 10.1021/ac701782q
pubmed: 18247517
Jones CM, Beardsley RL, Galhena AS et al (2006) Symmetrical gas-phase dissociation of noncovalent protein complexes via surface collisions. J Am Chem Soc 128:15044–15045. https://doi.org/10.1021/ja064586m
doi: 10.1021/ja064586m
pubmed: 17117828
Zhou M, Huang C, Wysocki VH (2012) Surface-induced dissociation of ion mobility-separated noncovalent complexes in a quadrupole/time-of-flight mass spectrometer. Anal Chem 84:6016–6023. https://doi.org/10.1021/ac300810u
doi: 10.1021/ac300810u
pubmed: 22747517
Yan J, Zhou M, Gilbert JD et al (2017) Surface-induced dissociation of protein complexes in a hybrid Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 89:895–901. https://doi.org/10.1021/acs.analchem.6b03986
doi: 10.1021/acs.analchem.6b03986
pubmed: 27977147
Snyder DT, Panczyk E, Stiving AQ et al (2019) Design and performance of a second-generation surface-induced dissociation cell for Fourier transform ion cyclotron resonance mass spectrometry of native protein complexes. Anal Chem 91:14049–14057. https://doi.org/10.1021/acs.analchem.9b03746
doi: 10.1021/acs.analchem.9b03746
pubmed: 31584811
pmcid: 6937523
Snyder DT, Panczyk EM, Somogyi A et al (2020) Simple and minimally invasive SID devices for native mass spectrometry. Anal Chem 92:11195–11203. https://doi.org/10.1021/acs.analchem.0c01657
doi: 10.1021/acs.analchem.0c01657
pubmed: 32700898
pmcid: 7438310
Harvey SR, VanAernum ZL, Kostelic MM et al (2020) Probing the structure of nanodiscs using surface-induced dissociation mass spectrometry. Chem Commun. https://doi.org/10.1039/D0CC05531J
Zhou M, Dagan S, Wysocki VH (2012) Protein subunits released by surface collisions of noncovalent complexes: nativelike compact structures revealed by ion mobility mass spectrometry. Angew Chem Int Ed 51:4336–4339. https://doi.org/10.1002/anie.201108700
doi: 10.1002/anie.201108700
Quintyn RS, Harvey SR, Wysocki VH (2015) Illustration of SID-IM-SID (surface-induced dissociation-ion mobility-SID) mass spectrometry: homo and hetero model protein complexes. Analyst 140:7012–7019. https://doi.org/10.1039/c5an01095k
Hernández H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2:715–726. https://doi.org/10.1038/nprot.2007.73
doi: 10.1038/nprot.2007.73
pubmed: 17406634
Dyachenko A, Gruber R, Shimon L et al (2013) Allosteric mechanisms can be distinguished using structural mass spectrometry. Proc Natl Acad Sci 110:7235–7239. https://doi.org/10.1073/pnas.1302395110
doi: 10.1073/pnas.1302395110
pubmed: 23589876
pmcid: 3645570
Ma X, Lai LB, Lai SM et al (2014) Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry. Angew Chem Int Ed 53:11483–11487. https://doi.org/10.1002/anie.201405362
doi: 10.1002/anie.201405362
Lorenzen K, van Duijn E (2010) Native mass spectrometry as a tool in structural biology. Curr Protoc Protein Sci 62:17.12.1–17.12.17. https://doi.org/10.1002/0471140864.ps1712s62
doi: 10.1002/0471140864.ps1712s62
VanAernum ZL (2020) Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry. Nat Protoc 15:28
doi: 10.1038/s41596-019-0281-0
Busch F, VanAernum ZL, Lai SM et al (2021) Analysis of tagged proteins using tandem affinity-buffer exchange chromatography online with native mass spectrometry. Biochemistry 60:1876–1884. https://doi.org/10.1021/acs.biochem.1c00138
doi: 10.1021/acs.biochem.1c00138
pubmed: 34100589
Gan J, Ben-Nissan G, Arkind G et al (2017) Native mass spectrometry of recombinant proteins from crude cell lysates. Anal Chem 89:4398–4404. https://doi.org/10.1021/acs.analchem.7b00398
doi: 10.1021/acs.analchem.7b00398
pubmed: 28345863
pmcid: 5702260
Vimer S, Ben-Nissan G, Sharon M (2020) Direct characterization of overproduced proteins by native mass spectrometry. Nat Protoc 15:236–265. https://doi.org/10.1038/s41596-019-0233-8
doi: 10.1038/s41596-019-0233-8
pubmed: 31942081
pmcid: 7212079
Ben-Nissan G, Vimer S, Warszawski S et al (2018) Rapid characterization of secreted recombinant proteins by native mass spectrometry. Commun Biol 1:1–12. https://doi.org/10.1038/s42003-018-0231-3
doi: 10.1038/s42003-018-0231-3
Xia Z, Williams ER (2018) Protein-glass surface interactions and ion desalting in electrospray ionization with submicron emitters. J Am Soc Mass Spectrom 29:194–202. https://doi.org/10.1021/jasms.8b05670
doi: 10.1021/jasms.8b05670
pubmed: 29027129
Susa AC, Lippens JL, Xia Z et al (2018) Submicrometer emitter ESI tips for native mass spectrometry of membrane proteins in ionic and nonionic detergents. J Am Soc Mass Spectrom 29:203–206. https://doi.org/10.1021/jasms.8b05656
doi: 10.1021/jasms.8b05656
pubmed: 29027132
Kirshenbaum N, Michaelevski I, Sharon M (2010) Analyzing large protein complexes by structural mass spectrometry. J Vis Exp:e1954. https://doi.org/10.3791/1954
Fernandez de la Mora J (2000) Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Anal Chim Acta 406:93–104. https://doi.org/10.1016/S0003-2670(99)00601-7
doi: 10.1016/S0003-2670(99)00601-7
Fort KL, van de Waterbeemd M, Boll D et al (2018) Expanding the structural analysis capabilities on an Orbitrap-based mass spectrometer for large macromolecular complexes. Analyst 143:100–105. https://doi.org/10.1039/C7AN01629H
doi: 10.1039/C7AN01629H
Rose RJ, Damoc E, Denisov E et al (2012) High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9:1084–1086. https://doi.org/10.1038/nmeth.2208
doi: 10.1038/nmeth.2208
pubmed: 23064518
Makarov A, Denisov E (2009) Dynamics of ions of intact proteins in the Orbitrap mass analyzer. J Am Soc Mass Spectrom 20:1486–1495. https://doi.org/10.1016/j.jasms.2009.03.024
doi: 10.1016/j.jasms.2009.03.024
pubmed: 19427230
Benesch JLP, Aquilina JA, Ruotolo BT et al (2006) Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem Biol 13:597–605. https://doi.org/10.1016/j.chembiol.2006.04.006
doi: 10.1016/j.chembiol.2006.04.006
pubmed: 16793517
Zhou M, Dagan S, Wysocki VH (2013) Impact of charge state on gas-phase behaviors of noncovalent protein complexes in collision induced dissociation and surface induced dissociation. Analyst 138:1353–1362. https://doi.org/10.1039/C2AN36525A
doi: 10.1039/C2AN36525A
pubmed: 23324896
Pagel K, Hyung S-J, Ruotolo BT, Robinson CV (2010) Alternate dissociation pathways identified in charge-reduced protein complex ions. Anal Chem 82:5363–5372. https://doi.org/10.1021/ac101121r
doi: 10.1021/ac101121r
pubmed: 20481443
Harvey S, VanAernum Z, Wysocki V (2021) Surface-induced dissociation of anionic vs cationic native-like protein complexes. https://doi.org/10.26434/chemrxiv.13547837.v1
Beardsley RL, Jones CM, Galhena AS, Wysocki VH (2009) Noncovalent protein tetramers and pentamers with “ n ” charges yield monomers with n /4 and n /5 charges. Anal Chem 81:1347–1356. https://doi.org/10.1021/ac801883k
doi: 10.1021/ac801883k
pubmed: 19140748
pmcid: 3477242
Kostelic M, Marty M (2020) Deconvolving native and intact protein mass spectra with UniDec. https://doi.org/10.26434/chemrxiv.13417118.v1
Marty MT, Baldwin AJ, Marklund EG et al (2015) Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 87:4370–4376. https://doi.org/10.1021/acs.analchem.5b00140
doi: 10.1021/acs.analchem.5b00140
pubmed: 25799115
pmcid: 4594776
Reid DJ, Diesing JM, Miller MA et al (2019) MetaUniDec: high-throughput deconvolution of native mass spectra. J Am Soc Mass Spectrom 30:118–127. https://doi.org/10.1007/s13361-018-1951-9
doi: 10.1007/s13361-018-1951-9
pubmed: 29667162
Bern M, Caval T, Kil YJ et al (2018) Parsimonious charge deconvolution for native mass spectrometry. J Proteome Res 17:1216–1226. https://doi.org/10.1021/acs.jproteome.7b00839
doi: 10.1021/acs.jproteome.7b00839
pubmed: 29376659
pmcid: 5838638
Quintyn RS, Zhou M, Yan J, Wysocki VH (2015) Surface-induced dissociation mass spectra as a tool for distinguishing different structural forms of gas-phase multimeric protein complexes. Anal Chem 87:11879–11886. https://doi.org/10.1021/acs.analchem.5b03441
doi: 10.1021/acs.analchem.5b03441
pubmed: 26499904