Predicting the habitat suitability of the invasive white mango scale, Aulacaspis tubercularis; Newstead, 1906 (Hemiptera: Diaspididae) using bioclimatic variables.

Mangifera indica L. climate change ecological niche modelling habitat suitability machine-learning algorithms scale insects

Journal

Pest management science
ISSN: 1526-4998
Titre abrégé: Pest Manag Sci
Pays: England
ID NLM: 100898744

Informations de publication

Date de publication:
Oct 2022
Historique:
revised: 16 05 2022
received: 19 01 2022
accepted: 03 06 2022
pubmed: 4 6 2022
medline: 8 9 2022
entrez: 3 6 2022
Statut: ppublish

Résumé

The white mango scale, Aulacaspis tubercularis (Hemiptera: Diaspididae), is an invasive pest that threatens the production of several crops of commercial value including mango. Though it is an important pest, little is known about its biology and ecology. Specifically, information on habitat suitability of A. tubercularis occurrence and potential distribution under climate change is largely unknown. In this study, we used four ecological niche models, namely maximum entropy, random forest, generalized additive models, and classification and regression trees to predict the habitat suitability of A. tubercularis under current and future [representative concentration pathways (RCPs): RCP4.5 and RCP8.5 of the year 2070] climatic scenarios, using bioclimatic variables. Models' performance was evaluated using the true skill statistic (TSS), the area under the curve (AUC), correlation (COR), and the deviance. All models sufficiently predicted the occurrence of A. tubercularis with high accuracy (AUC ≥ 0.93, TSS ≥ 0.81 and COR ≥ 0.77). The random forest algorithm had the highest accuracy among the four models (AUC = 0.99, TSS = 0.93, COR = 0.90, deviance = 0.26). Temperature seasonality (Bio4), mean temperature of the driest quarter (Bio9), and precipitation seasonality (Bio15) were the most important variables influencing A. tubercularis occurrence. Models' predictions showed that countries in east, south, and west Africa are highly suitable for A. tubercularis establishment under current conditions. Similarly, Mexico, Brazil, India, Myanmar, Bangladesh, Thailand, Laos, Vietnam, and Cambodia are also highly suitable for the pest to thrive. Under future conditions, the suitable areas might slightly decrease in many countries of sub-Saharan Africa under both RCPs. However, the range of expansion of A. tubercularis is projected to be higher in Australia, Brazil, Spain, Italy, and Portugal under the future climatic scenarios. The results reported here will be useful for guiding decision-making, developing an effective management strategy, and serving as an early warning tool to prevent further spread toward new areas. © 2022 Society of Chemical Industry.

Sections du résumé

BACKGROUND BACKGROUND
The white mango scale, Aulacaspis tubercularis (Hemiptera: Diaspididae), is an invasive pest that threatens the production of several crops of commercial value including mango. Though it is an important pest, little is known about its biology and ecology. Specifically, information on habitat suitability of A. tubercularis occurrence and potential distribution under climate change is largely unknown. In this study, we used four ecological niche models, namely maximum entropy, random forest, generalized additive models, and classification and regression trees to predict the habitat suitability of A. tubercularis under current and future [representative concentration pathways (RCPs): RCP4.5 and RCP8.5 of the year 2070] climatic scenarios, using bioclimatic variables. Models' performance was evaluated using the true skill statistic (TSS), the area under the curve (AUC), correlation (COR), and the deviance.
RESULTS RESULTS
All models sufficiently predicted the occurrence of A. tubercularis with high accuracy (AUC ≥ 0.93, TSS ≥ 0.81 and COR ≥ 0.77). The random forest algorithm had the highest accuracy among the four models (AUC = 0.99, TSS = 0.93, COR = 0.90, deviance = 0.26). Temperature seasonality (Bio4), mean temperature of the driest quarter (Bio9), and precipitation seasonality (Bio15) were the most important variables influencing A. tubercularis occurrence. Models' predictions showed that countries in east, south, and west Africa are highly suitable for A. tubercularis establishment under current conditions. Similarly, Mexico, Brazil, India, Myanmar, Bangladesh, Thailand, Laos, Vietnam, and Cambodia are also highly suitable for the pest to thrive. Under future conditions, the suitable areas might slightly decrease in many countries of sub-Saharan Africa under both RCPs. However, the range of expansion of A. tubercularis is projected to be higher in Australia, Brazil, Spain, Italy, and Portugal under the future climatic scenarios.
CONCLUSION CONCLUSIONS
The results reported here will be useful for guiding decision-making, developing an effective management strategy, and serving as an early warning tool to prevent further spread toward new areas. © 2022 Society of Chemical Industry.

Identifiants

pubmed: 35657692
doi: 10.1002/ps.7030
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4114-4126

Subventions

Organisme : International Development Research Centre (IDRC-Canada)
Organisme : Government of the Republic of Kenya
Organisme : Swiss Agency for Development and Cooperation
Organisme : Swedish International Development Cooperation Agency
Organisme : Australian Centre for International Agricultural Research
Organisme : International Development Research Centre
Organisme : Norwegian Agency for Development Cooperation

Informations de copyright

© 2022 Society of Chemical Industry.

Références

Otieno HMO, A review of white mango scale (Aulacaspis tubercularis Newstead; Hemiptera: Diaspididae) in sub-Saharan Africa: distribution, impact and management strategies. Pakistan J Agric Res 34:227-238 (2021).
CABI, Aulacaspis tubercularis, in Invasive Species Compendium. International CAB. www.Cabi.org/isc, Wallingford, UK (2021).
Borchsenius NS, A Catalogue of the Armoured Scale Insects (Diaspidoidea) of the World. Izdat. Nauka, Moscow, Russia (1966).
del Pino M, Bienvenido C, Boyero JR and Vela JM, Biology, ecology and integrated pest management of the white mango scale, Aulacaspis tubercularis Newstead, a new pest in southern Spain - a review. Crop Prot 133:105160 (2020).
García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y and Hardy NB, ScaleNet: a literature-based model of scale insect biology and systematics. Database 2016:1-5 (2016).
Hodges G and Hamon A, White Mango Scale Aulacaspis tubercularis Newstead (Coccoidea: Diaspididae). Pest Alert, Florida Department of Agriculture and Consumer Services, Pest Alert Division of Plant Industry, (2016).
El-Metwally MM, Moussa SFM and Ghanim NM, Studies on the population fluctuations and distribution of the white mango scale insect, Aulacaspis tubercularis Newstead within the canopy of the mango trees in eastern of Delta region at the north of Egypt. Egypt Acad J Biol Sci, A Entomol 4:123-130 (2011).
Djirata O, Emana G and Kahuthia-Gathu R, Population dynamics of white mango scale, Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae) in Western Ethiopia. Afr J Agric Res 13:1598-1605 (2018).
Rehmat T, Anis SB, Khan MT, Fatma J and Begum S, Aphelinid parasitoids (hymenoptera: Chalcidoidea) of armoured scale insects (Homoptera: Diaspididae) from India. Biol Med 3:270-281 (2011).
Abo-shanab A, Suppression white mango scale, Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae) on mango trees in El-Beheira governorate, Egypt. Egypt Acad J Biol Sci 5:43-50 (2012).
López-Guillén G, Cantú DN and López MAU, Geographic distribution and damage estimate of white scale of mango in Chiapas, Mexico. Rev Mex Cienc Agríc 8:1851-1866 (2017).
Urías LMA, Principales plagas del mango en Nayarit, in El cultivo del mango: principios y tecnología de producción, ed. by Vázquez VV and BMH P. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Santiago Ixcuintla, Nayarit, pp. 211-234 (2006).
Dinka DT, Terefe TH, Wendafrash BH and Edosa TT, Distribution and population dynamics of the white mango scale, Aulacaspis tubercularis in Southwest Ethiopia. Agric Res Technol 20(1):556117 (2019).
del Pino M, Bienvenido C, Wong ME, Rodríguez MDC, Boyero JR and Vela JM, Influence of pre-harvest bagging on the incidence of Aulacaspis tubercularis newstead (Hemiptera: Diaspididae) and fruit quality in mango. Insects 12:500 (2021).
Sayed AMM and Dunlap CA, Virulence of some entomopathogenic fungi isolates of Beauveria bassiana (Hypocreales: Cordycipitaceae) and Metarhizium anisopliae (Hypocreales: Clavicipitaceae) to Aulacaspis tubercularis (Hemiptera: Diaspididae) and Icerya seychellarum (Hemiptera: Monoph). J Econ Entomol 112:2584-2596 (2019).
Amún C, Claps LE and Bottero MAS, Primer registro de Aulacaspis tubercularis (Hemiptera: Diaspididae) en la Argentina. Rev Soc Entomol Argent 71:289-291 (2012).
Babege T, Haile B and Hailu A, Survey on distribution and significance of white mango scale (Aulacaspis tubercularis) in Bench-Maji zone, Southwest Ethiopia. J Hortic For 9:26-32 (2017).
Djirata O, Getu E and Kahuthia-Gathu R, A survey of geographical distribution and host range of white mango scale, Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae) in Western Ethiopia. J Entomol Nematol 11:59-65 (2019).
Labuschagne T, Van Hamburg H and Froneman I, Population dynamics of the mango scale, Aulacaspis tubercularis Newstead (Coccoidea: Diaspididae), South Africa. Isr J Entomol 29:207-217 (1995).
Ayalew G, Fekadu A and Sisay B, Appearance and chemical control of white mango scale (Aulacaspis tubercularis) in central rift valley. Sci Technol Arts Res J 2:59-63 (2015).
Urías-López MA, Osuna-García JA, Vázquez-Valdivia V and Pérez-Barraza MH, Fluctuación poblacional y distribución de la escama blanca del mango (Aulacaspis tubercularis Newstead) en Nayarit, México. Rev Chapingo Ser Hortic 16:77-82 (2010).
Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK et al., Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1-16 (2002).
Azrag AGA, Pirk CWW, Yusuf AA, Pinard F, Niassy S, Mosomtai G et al., Prediction of insect pest distribution as influenced by elevation: combining field observations and temperature-dependent development models for the coffee stink bug, Antestiopsis thunbergii (Gmelin). PLoS One 13:e0199569 (2018).
Tonnang HEZ, Mohamed SA, Khamis F and Ekesi S, Identification and risk assessment for worldwide invasion and spread of Tuta absoluta with a focus on sub- Saharan Africa: implications for phytosanitary measures and management. PLoS One 10:e0135283 (2015).
Mudereri BT, Chitata T, Chemura A, Makaure J, Mukanga C and Abdel-Rahman EM, Is the protected area coverage still relevant in protecting the Southern Ground-hornbill (Bucorvus leadbeateri) biological niche in Zimbabwe? Perspectives from ecological predictions. GIScience Remote Sens 58:405-424 (2021).
Miller J, Species distribution modeling. Geogr Compass 4:490-509 (2010).
Kearney MR, Wintle BA and Porter WP, Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv Lett 3:203-213 (2010).
Mwalusepo S, Tonnang HEZ, Massawe ES, Okuku GO, Khadioli N, Johansson T et al., Predicting the impact of temperature change on the future distribution of maize stem borers and their natural enemies along East African Mountain gradients using phenology models. PLoS One 10:1-23 (2015).
Norberg A, Abrego N, Blanchet FG, Adler FR, Anderson BJ, Anttila J et al., A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol Monogr 89:1-24 (2019).
Stephens AEA, Kriticos DJ and Leriche A, The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bull Entomol Res 97:369-378 (2007).
Zingore KM, Sithole G, Abdel-Rahman EM, Mohamed SA, Ekesi S, Tanga CM et al., Global risk of invasion by Bactrocera zonata: implications on horticultural crop production under changing climatic conditions. PLoS One 15:1-24 (2020).
Merow C, Smith MJ and Silander JA, A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36:1058-1069 (2013).
Mudereri BT, Abdel-Rahman EM, Dube T, Landmann T, Khan Z, Kimathi E et al., Multi-source spatial data-based invasion risk modeling of Striga (Striga asiatica) in Zimbabwe. GIScience Remote Sens 57:553-571 (2020).
GBIF.org, GBIF Occurrence Download https://doi.org/10.15468/dl.xc6tp2 (2021).
Hernández-Fuentes LM, Urias-López MA, López-Arroyo JI and López Arriaga JG, Uso de atrayentes y suplementos alimenticios para el incremento de depredadores de escama blanca del mango, Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae). Acta Zoológica Mex 28:145-160 (2012).
Djirata O, Getu E and Kahuthia-Gathu R, Trend in mango production and potential threat from emerging white mango scale, Aulacaspis tubercularis (Homoptera: Diaspididae) in Central and Eastern Kenya. J Nat Sci Res 6:87-94 (2016).
Le Lagadec MD, The control of mango scale in commercial orchards through the use of the predatory beetle, Cybocephalus binotatus. Acta Hortic 645:509-515 (2004).
Soysouvanh P and Hong K-J, Scale insects (Hemiptera: Coccoidea) on mango in Laos. Khon Kaen Agric J 44:87-92 (2016).
Kondo T, Scale insects (Hemiptera: Coccoidea) associated with avocado crop, Persea americana Mill. (Lauraceae) in Valle del Cauca and neighboring departments of Colombia, 23 (2016).
Germain J-F, Vayssieres J-F and Matile-Ferrero D, Preliminary inventory of scale insects on mango trees in Benin. Entomol Hell 19:124-131 (2010).
Joshi S and Sangma RHC, Natural enemies associated with Aphids and Coccids from Sikkim, India. J Biol Control 29:3-7 (2015).
García-Álvarez NC, Urías-López MA, Hernández-Fuentes LM, González-Carrillo J, Pérez-Barraza MH and Osuna-García JA, Distribución de la escama blanca del mango Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae) en Nayarit, México. Acta Zoológica Mex 30:321-336 (2014).
Ramos ASDJC, De Lemos RNS, Costa VA, Peronti ALBG, Da Silva EA, Mondego JM et al., Hymenopteran parasitoids associated with scale insects (Hemiptera: Coccoidea) in tropical fruit trees in the eastern amazon, Brazil. Florida Entomol 101:273-278 (2018).
Verde LG, Cerasa G, Altamore B and Farina V, First record of Icerya seychellarum and confirmed occurrence of Aulacaspis tubercularis (Hemiptera: Coccomorpha) in Italy. Phytoparasitica 48:175-182 (2020).
Siam A and Othman E, Field evaluation of botanicals extracts for suppressing the mango scale insect, Aulacaspis tubercularis (Newstead) (Hemiptera: Diaspididae). Egypt J Biol Pest Control 30:1-5 (2020).
Bakry MMS and Abdel-Baky NF, Examining the spatial distribution pattern and optimum sample size for monitoring of the white mango scale insect, Aulacaspis tubercularis (Newstead) (Hemiptera: Diaspididae) on certain mango cultivars. Int J Hortic Agric Food Sci 4:91-107 (2020).
López-Guillén G, Urías-López MA and Noriega-Cantú DH, Effect of phytosanitary pruning in populations of Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae) and its natural enemies. Rev Mex Ciencias Agrícolas 9:1817-1822 (2018).
Hassan NA, Radwan SG, Ammar AEE and El-Sahn OMN, Effect of alternative insecticides sprayed with two flow rates against some scale insects on mango trees by using conventional motor sprayer at qalubyia governorate, Egypt, in Proceeding of the International Conference of Environmental Sciences. Ain Shamas University, Cairo, Egypt, pp. 62-79 (2013).
Culik MP, Martins DS, Ventura JA and Wolff VS, Diaspididae (Hemiptera: Coccoidea) of espírito santo, Brazil. J Insect Sci 8:1-6 (2008).
Urías-López MA, Nava-Camberos U, González-Carrillo JA, Hernández-Fuentes LM and García-Álvarez NC, Desarrollo de un programa de muestreo para la escama blanca del mango, Aulacaspis tubercularis Newstead. Southwest Entomol 41:115-126 (2016).
Noriega-Cantú DH, Urías-López MA, González-Carrillo JA and López-Guillén G, Abundancia temporal de la escama blanca del mango, Aulacaspis tubercularis Newstead, en guerrero, México. Southwest Entomol 41:845-853 (2016).
Boria RA, Olson LE, Goodman SM and Anderson RP, Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Modell 275:73-77 (2014).
Hijmans RJ, Cameron SE, Parra JL, Jones PG and Jarvis A, Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965-1978 (2005).
Otieno MHJ, Ayieko MA, Niassy S, Salifu D, Azrag AGA, Fathiya KM et al., Integrating temperature-dependent life table data into insect life cycle model for predicting the potential distribution of Scapsipedus icipe Hugel & Tanga. PLoS One 14:e0222941 (2019).
Azrag AGA, Yusuf AA, Pirk CWW, Niassy S, Guandaru EK, David G et al., Modelling the effect of temperature on the biology and demographic parameters of the African coffee white stem borer, Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae). J Therm Biol 89:102534 (2020).
Azrag AGA, Murungi LK, Tonnang HEZ, Mwenda D and Babin R, Temperature-dependent models of development and survival of an insect pest of African tropical highlands, the coffee antestia bug Antestiopsis thunbergii (Hemiptera: Pentatomidae). J Therm Biol 70:27-36 (2017).
O'Donnell MS and Ignizio DA, Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States, Vol. 691. US Geological Survey Data Series, pp. 1-17 (2012).
Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T et al., Development and evaluation of an earth-system model - HadGEM2. Geosci Model Dev 4:1051-1075 (2011).
Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G et al., RCP 8.5-a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33-57 (2011).
Fujino J, Nair R, Kainuma M, Masuif T and Matsuok Y, Multi-gas mitigation analysis on stabilization scenarios using aim global model. Energy J 27:343-353 (2006).
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G et al., Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27-46 (2013).
Naimi B, Hamm NAS, Groen TA, Skidmore AK and Toxopeus AG, Where is positional uncertainty a problem for species distribution modelling? Ecography 37:191-203 (2014).
R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Austria (2020).
Naimi B and Araújo MB, Sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39:368-375 (2016).
Valavi R, Guillera-Arroita G, Lahoz-Monfor JJ and Elith J, Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol Monogr 92:e01486 (2022).
Phillips SJ and Dudík M, Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161-175 (2008).
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE and Yates CJ, A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43-57 (2011).
Shabani F, Kumar L and Ahmadi M, A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol Evol 6:5973-5986 (2016).
Pal M, Random forest classifier for remote sensing classification. Int J Remote Sens 26:217-222 (2005).
Simpson GL, Modelling palaeoecological time series using generalised additive models. Front Ecol Evol 6:1-21 (2018).
Becker EA, Carretta JV, Forney KA, Barlow J, Brodie S, Hoopes R et al., Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecol Evol 10:5759-5784 (2020).
Kosicki JZ, Generalised additive models and random forest approach as effective methods for predictive species density and functional species richness. Environ Ecol Stat 27:273-292 (2020).
Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F and Mosavi A, An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087-2096 (2019).
Hao T, Elith J, Guillera-Arroita G and Lahoz-Monfort JJ, A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib 25:839-852 (2019).
Phillips SJ, DudiK M, Elith J, Graham CH, Lehmann A, Leathwick J et al., Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181-197 (2009).
Liaw A and Wiener M, Classification and regression by randomForest. R News 2:18-22 (2002).
Hastie T and Tibshirani R, Generalised Additive Models. Chapman and Hall, London (1991).
Breiman L, Friedman J, Stone CJ and Olshen RA, Classification algorithms and regression trees. Classif Regres Trees 15:246 (1984).
Allouche O, Tsoar A and Kadmon R, Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223-1232 (2006).
Tsoar A, Allouche O, Steinitz O, Rotem D and Kadmon R, A comparative evaluation of presence- only methods for modelling species distribution. Divers Distrib 13:397-405 (2007).
Araújo MB, Anderson RP, Barbosa AM, Beale CM, Dormann CF, Early R et al., Standards for distribution models in biodiversity assessments. Sci Adv 5:1-12 (2019).
Elith J, Kearney M and Phillips S, The art of modelling range-shifting species. Methods Ecol Evol 1:330-342 (2010).
Kampichler C, Wieland R, Calmé S, Weissenberger H and Arriaga-Weiss S, Classification in conservation biology: a comparison of five machine-learning methods. Ecol Inform 5:441-450 (2010).
Guan BC, Guo HJ, Chen SS, Li DM, Liu X, Gong XI et al., Shifting ranges of eleven invasive alien plants in China in the face of climate change. Ecol Inform 55:101024 (2020).
Mahmoud MEE, Mohamed SA, Ndlela S, Azrag AGA, Khamis FM, Bashir MAE et al., Distribution, relative abundance, and level of infestation of the invasive peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) and its associated natural enemies in Sudan. Phytoparasitica 48:589-605 (2020).
Tepa-yotto GT, Tonnang HEZ, Goergen G, Subramanian S, Kimathi E, Abdel-rahman EM et al., Global habitat suitability of Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae): key parasitoids considered for its biological control. Insects 12:273 (2021).
Fand BB, Shashank PR, Suroshe SS, Chandrashekar K, Meshram NM and Timmanna HN, Invasion risk of the south american tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India: predictions based on MaxEnt ecological niche modelling. Int J Trop Insect Sci 40:561-571 (2020).
Bautista-Rosales PU, Ragazzo-Sánchez JA, Calderón-Santoyo M, Cortéz-Mondaca E and Servín-Villegas R, Aulacaspis tubercularis newstead in mango orchards of Nayarit, Mexico, and relationship with environmental and agronomic factors. Southwest Entomol 38:221-230 (2013).
Biber-Freudenberger L, Ziemacki J, Tonnang HEZ and Borgemeister C, Future risks of pest species under changing climatic conditions. PLoS One 11:e0153237 (2016).

Auteurs

Abdelmutalab Ga Azrag (AG)

International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya.
Department of Crop Protection, Faculty of Agricultural Sciences, University of Gezira, Wad Medani, Sudan.

Samira A Mohamed (SA)

International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya.

Shepard Ndlela (S)

International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya.

Sunday Ekesi (S)

International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH