Bayesian analysis of dynamic phosphoproteomic data identifies protein kinases mediating GPCR responses.
Animals
Aquaporin 2
/ genetics
Bayes Theorem
Calcium
/ metabolism
Calmodulin
/ metabolism
Cyclic AMP-Dependent Protein Kinases
/ metabolism
Phosphorylation
Protein Kinases
/ metabolism
Rats
Receptors, G-Protein-Coupled
/ metabolism
Receptors, Vasopressin
/ metabolism
Vasopressins
/ metabolism
Water
/ metabolism
Bayes’ Theorem
Collecting duct
Phosphoproteomics
Protein kinase
V2 vasopressin receptor
Journal
Cell communication and signaling : CCS
ISSN: 1478-811X
Titre abrégé: Cell Commun Signal
Pays: England
ID NLM: 101170464
Informations de publication
Date de publication:
03 06 2022
03 06 2022
Historique:
received:
31
03
2022
accepted:
28
04
2022
entrez:
6
6
2022
pubmed:
7
6
2022
medline:
9
6
2022
Statut:
epublish
Résumé
A major goal in the discovery of cellular signaling networks is to identify regulated phosphorylation sites ("phosphosites") and map them to the responsible protein kinases. The V2 vasopressin receptor is a G-protein coupled receptor (GPCR) that is responsible for regulation of renal water excretion through control of aquaporin-2-mediated osmotic water transport in kidney collecting duct cells. Genome editing experiments have demonstrated that virtually all vasopressin-triggered phosphorylation changes are dependent on protein kinase A (PKA), but events downstream from PKA are still obscure. Here, we used: 1) Tandem mass tag-based quantitative phosphoproteomics to experimentally track phosphorylation changes over time in native collecting ducts isolated from rat kidneys; 2) a clustering algorithm to classify time course data based on abundance changes and the amino acid sequences surrounding the phosphosites; and 3) Bayes' Theorem to integrate the dynamic phosphorylation data with multiple prior "omic" data sets covering expression, subcellular location, known kinase activity, and characteristic surrounding sequences to identify a set of protein kinases that are regulated secondary to PKA activation. Phosphoproteomic studies revealed 185 phosphosites regulated by vasopressin over 15 min. The resulting groups from the cluster algorithm were integrated with Bayes' Theorem to produce corresponding ranked lists of kinases likely responsible for each group. The top kinases establish three PKA-dependent protein kinase modules whose regulation mediate the physiological effects of vasopressin at a cellular level. The three modules are 1) a pathway involving several Rho/Rac/Cdc42-dependent protein kinases that control actin cytoskeleton dynamics; 2) mitogen-activated protein kinase and cyclin-dependent kinase pathways that control cell proliferation; and 3) calcium/calmodulin-dependent signaling. Our findings identify a novel set of downstream small GTPase effectors and calcium/calmodulin-dependent kinases with potential roles in the regulation of water permeability through actin cytoskeleton rearrangement and aquaporin-2 trafficking. The proposed signaling network provides a stronger hypothesis for the kinases mediating V2 vasopressin receptor responses, encouraging future targeted examination via reductionist approaches. Furthermore, the Bayesian analysis described here provides a template for investigating signaling via other biological systems and GPCRs. Video abstract.
Sections du résumé
BACKGROUND
A major goal in the discovery of cellular signaling networks is to identify regulated phosphorylation sites ("phosphosites") and map them to the responsible protein kinases. The V2 vasopressin receptor is a G-protein coupled receptor (GPCR) that is responsible for regulation of renal water excretion through control of aquaporin-2-mediated osmotic water transport in kidney collecting duct cells. Genome editing experiments have demonstrated that virtually all vasopressin-triggered phosphorylation changes are dependent on protein kinase A (PKA), but events downstream from PKA are still obscure.
METHODS
Here, we used: 1) Tandem mass tag-based quantitative phosphoproteomics to experimentally track phosphorylation changes over time in native collecting ducts isolated from rat kidneys; 2) a clustering algorithm to classify time course data based on abundance changes and the amino acid sequences surrounding the phosphosites; and 3) Bayes' Theorem to integrate the dynamic phosphorylation data with multiple prior "omic" data sets covering expression, subcellular location, known kinase activity, and characteristic surrounding sequences to identify a set of protein kinases that are regulated secondary to PKA activation.
RESULTS
Phosphoproteomic studies revealed 185 phosphosites regulated by vasopressin over 15 min. The resulting groups from the cluster algorithm were integrated with Bayes' Theorem to produce corresponding ranked lists of kinases likely responsible for each group. The top kinases establish three PKA-dependent protein kinase modules whose regulation mediate the physiological effects of vasopressin at a cellular level. The three modules are 1) a pathway involving several Rho/Rac/Cdc42-dependent protein kinases that control actin cytoskeleton dynamics; 2) mitogen-activated protein kinase and cyclin-dependent kinase pathways that control cell proliferation; and 3) calcium/calmodulin-dependent signaling.
CONCLUSIONS
Our findings identify a novel set of downstream small GTPase effectors and calcium/calmodulin-dependent kinases with potential roles in the regulation of water permeability through actin cytoskeleton rearrangement and aquaporin-2 trafficking. The proposed signaling network provides a stronger hypothesis for the kinases mediating V2 vasopressin receptor responses, encouraging future targeted examination via reductionist approaches. Furthermore, the Bayesian analysis described here provides a template for investigating signaling via other biological systems and GPCRs. Video abstract.
Identifiants
pubmed: 35659261
doi: 10.1186/s12964-022-00892-6
pii: 10.1186/s12964-022-00892-6
pmc: PMC9164474
doi:
Substances chimiques
Aquaporin 2
0
Calmodulin
0
Receptors, G-Protein-Coupled
0
Receptors, Vasopressin
0
Water
059QF0KO0R
Vasopressins
11000-17-2
Protein Kinases
EC 2.7.-
Cyclic AMP-Dependent Protein Kinases
EC 2.7.11.11
Calcium
SY7Q814VUP
Types de publication
Journal Article
Video-Audio Media
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
80Subventions
Organisme : Intramural NIH HHS
ID : ZIA HL001285
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA HL006129
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Science. 2002 Dec 6;298(5600):1912-34
pubmed: 12471243
Physiol Genomics. 2017 Mar 1;49(3):151-159
pubmed: 28039431
Am J Physiol Renal Physiol. 2008 Oct;295(4):F1030-43
pubmed: 18667481
Biochim Biophys Acta. 1996 Dec 12;1314(3):191-225
pubmed: 8982275
Nucleic Acids Res. 2022 Jan 7;50(D1):D543-D552
pubmed: 34723319
Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:175-194
pubmed: 31561739
J Biol Chem. 2000 Nov 24;275(47):36839-46
pubmed: 10973964
Am J Physiol. 1997 Jan;272(1 Pt 2):F3-12
pubmed: 9039043
Mol Pharmacol. 2021 May;99(5):358-369
pubmed: 32245905
Am J Physiol. 1993 Jul;265(1 Pt 2):F35-45
pubmed: 8342613
Annu Rev Biochem. 1999;68:425-58
pubmed: 10872456
Sci Rep. 2016 Oct 11;6:34863
pubmed: 27725713
JCI Insight. 2021 Apr 22;6(8):
pubmed: 33724959
J Biol Chem. 2005 Mar 18;280(11):10743-8
pubmed: 15647260
Am J Physiol Cell Physiol. 2012 Oct 1;303(7):C715-27
pubmed: 22723110
Nat Protoc. 2009;4(1):44-57
pubmed: 19131956
Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20
pubmed: 25514926
Am J Physiol Cell Physiol. 2015 Dec 15;309(12):C799-812
pubmed: 26310817
Sci Rep. 2019 Jul 19;9(1):10503
pubmed: 31324866
J Biol Chem. 1998 Mar 6;273(10):5670-7
pubmed: 9488697
Am J Physiol Cell Physiol. 2015 Dec 15;309(12):C785-98
pubmed: 26310816
Sci Signal. 2009 Jul 28;2(81):ra39
pubmed: 19638616
Am J Physiol Renal Physiol. 2001 Dec;281(6):F1092-101
pubmed: 11704560
Ann Intern Med. 1999 Jun 15;130(12):1005-13
pubmed: 10383350
Am J Physiol. 1998 Mar;274(3):F564-72
pubmed: 9530273
Curr Opin Genet Dev. 1995 Feb;5(1):24-30
pubmed: 7749321
Am J Physiol Renal Physiol. 2017 Jan 1;312(1):F84-F95
pubmed: 27784696
Physiol Rev. 2002 Jan;82(1):205-44
pubmed: 11773613
J Physiol. 2002 Feb 1;538(Pt 3):891-9
pubmed: 11826172
Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013-7
pubmed: 7532304
N Engl J Med. 2015 Apr 2;372(14):1349-58
pubmed: 25830425
Am J Physiol Renal Physiol. 2020 Nov 1;319(5):F848-F862
pubmed: 33017189
Bioinformatics. 2019 Dec 15;35(24):5313-5314
pubmed: 31318409
J Biol Chem. 2002 Mar 22;277(12):10379-86
pubmed: 11782489
Kidney Int. 2000 Apr;57(4):1460-71
pubmed: 10760082
Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8984-8
pubmed: 7522327
Cell Physiol Biochem. 2008;22(5-6):487-96
pubmed: 19088430
Kidney Res Clin Pract. 2013 Sep;32(3):96-102
pubmed: 26877923
Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F789-F804
pubmed: 31313956
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):17119-24
pubmed: 24085853
J Am Soc Nephrol. 2010 Feb;21(2):303-15
pubmed: 20075062
J Biol Chem. 2004 Nov 19;279(47):49026-35
pubmed: 15347643
Curr Opin Cell Biol. 1997 Feb;9(1):86-92
pubmed: 9013670
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8875-E8884
pubmed: 28973931
J Am Soc Nephrol. 2020 Jun;31(6):1255-1266
pubmed: 32358040
J Am Soc Nephrol. 2021 Mar 4;:
pubmed: 33769951
Am J Physiol Renal Physiol. 2012 Jan 1;302(1):F78-84
pubmed: 21937603
Biochem J. 2005 Dec 15;392(Pt 3):493-7
pubmed: 16107208
Am J Physiol Renal Physiol. 2020 Mar 1;318(3):F600-F616
pubmed: 31904282
Proc Natl Acad Sci U S A. 2006 May 2;103(18):7159-64
pubmed: 16641100
Am J Physiol. 1997 Jun;272(6 Pt 2):F817-22
pubmed: 9227644
Cell. 2006 Nov 3;127(3):635-48
pubmed: 17081983
Kidney Int. 2003 Jun;63(6):1983-94
pubmed: 12753285
Am J Physiol Renal Physiol. 2016 Nov 1;311(5):F890-F900
pubmed: 27534994
Mol Biol Cell. 1992 May;3(5):475-9
pubmed: 1611153
Am J Physiol. 1987 Aug;253(2 Pt 2):F251-62
pubmed: 3303974
Trends Biotechnol. 2002 Jun;20(6):261-8
pubmed: 12007495
Sci Signal. 2008 Sep 02;1(35):ra2
pubmed: 18765831
Am J Physiol. 1994 Dec;267(6 Pt 1):C1507-24
pubmed: 7810592
Am J Physiol. 1993 Sep;265(3 Pt 1):C757-62
pubmed: 8214031
J Biol Chem. 2005 Apr 8;280(14):13624-30
pubmed: 15710610
J Biol Chem. 1997 Jun 6;272(23):14800-4
pubmed: 9169447
Br J Pharmacol. 2021 Mar;178(6):1426-1444
pubmed: 33346914
Am J Physiol Cell Physiol. 2014 Jul 15;307(2):C123-39
pubmed: 24598363
J Biol Chem. 2001 Jun 8;276(23):20451-7
pubmed: 11278652
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3882-7
pubmed: 20139300
J Clin Invest. 1988 Jun;81(6):1879-88
pubmed: 2838523
Am J Physiol Renal Physiol. 2021 Sep 1;321(3):F389-F401
pubmed: 34308668