Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide promote liver toxicity in guppy (Poecilia reticulata): A histochemical and ultrastructural approach.


Journal

Environmental toxicology
ISSN: 1522-7278
Titre abrégé: Environ Toxicol
Pays: United States
ID NLM: 100885357

Informations de publication

Date de publication:
Sep 2022
Historique:
revised: 08 05 2022
received: 11 01 2022
accepted: 14 05 2022
pubmed: 7 6 2022
medline: 9 8 2022
entrez: 6 6 2022
Statut: ppublish

Résumé

Citrate functionalized iron oxide nanoparticles (IONPs) are employed for various purposes-including environmental remediation but the interaction of IONPs with aquatic contaminants is poorly understood. Among those, glyphosate-based herbicides are toxic and affect target organs such as the liver. Evaluations of livers of female Poecilia reticulata by exposures to IONPs at a concentration of 0.3 mg/L were performed with association to: (1) 0.65 mg of glyphosate per litter and (2) 1.3 mg of glyphosate per litter of Roundup Original, and (3) glyphosate P.A at 0.65 mg/L. These associations were carried out progressively, after 7, 14, and 21 days. We detected circulatory disturbances, inflammatory responses, activation of the immune system, regressive changes, and progressive responses with changes in the connective tissue and decreased glycogen reserve from days 14 to 21. Ultrastructural changes in the Disse space and microvilli of hepatocytes indicated decreased contact surface area. In general, the damage was time and concentration dependent, increasing from 7 to 14 days and tending to stabilize from 14 to 21 days. Therefore, herbicide-associated IONPs functioned as xenobiotics inducing intense cellular detoxification processes and activation of hepatic immune responses.

Identifiants

pubmed: 35661388
doi: 10.1002/tox.23591
doi:

Substances chimiques

Herbicides 0
Glycine TE7660XO1C

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2244-2258

Subventions

Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
Organisme : Fundação de Amparo à Pesquisa do Estado de Goiás

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Tsui MTK, Chu LM. Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere. 2003;52(7):1189-1197. doi:10.1016/S0045-6535(03)00306-0
Duke SO. The history and current status of glyphosate. Pest Manag Sci. 2018;74(5):1027-1034. doi:10.1002/ps.4652
Rocha TL, Santos APR d, Yamada ÁT, et al. Proteomic and histopathological response in the gills of Poecilia reticulata exposed to glyphosate-based herbicide. Environ Toxicol Pharmacol. 2015;40(1):175-186. doi:10.1016/j.etap.2015.04.016
Salbego J, Pretto A, Gioda CR, et al. Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in Piava (leporinus obtusidens). Arch Environ Contam Toxicol. 2010;58(3):740-745. doi:10.1007/s00244-009-9464-y
Matozzo V, Fabrello J, Marin MG. The effects of glyphosate and its commercial formulations to marine invertebrates: a review. J Mar Sci Eng. 2020;8(6):1-20. doi:10.3390/JMSE8060399
Bonifacio AF, Hued AC. Single and joint effects of chronic exposure to chlorpyrifos and glyphosate based pesticides on structural biomarkers in Cnesterodon decemmaculatus. Chemosphere. 2019;236:124311. doi:10.1016/j.chemosphere.2019.07.042
Jhamtani RC, Shukla S, Sivaperumal P, Dahiya MS, Agarwal R. Impact of co-exposure of aldrin and titanium dioxide nanoparticles at biochemical and molecular levels in zebrafish. Environ Toxicol Pharmacol. 2017;2018(58):141-155. doi:10.1016/j.etap.2017.12.021
Roda JFB, Lauer MM, Risso WE, dos Reis B, Martinez C. Microplastics and copper effects on the neotropical teleost Prochilodus lineatus: is there any interaction? Comp Biochem Physiol -Part A Mol Integr Physiol. 2020;242(2019):110659. doi:10.1016/j.cbpa.2020.110659
Monikh FA, Chupani L, Arenas-Lago D, et al. Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. Nat Commun. 2021;12(1):1-12. doi:10.1038/s41467-021-21164-w
Griboff J, Wunderlin DA, Horacek M, Monferrán MV. Seasonal variations on trace element bioaccumulation and trophic transfer along a freshwater food chain in Argentina. Environ Sci Pollut Res. 2020;27(32):40664-40678. doi:10.1007/s11356-020-10068-9
Mahana A, Guliy OI, Mehta SK. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: current status and future challenges. Ecotoxicol Environ Saf. 2021;208:111662. doi:10.1016/j.ecoenv.2020.111662
Woo K, Hong J, Choi S, et al. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater. 2004;16(14):2814-2818. doi:10.1021/cm049552x
Mohmood I, Lopes CB, Lopes I, Ahmad I, Duarte AC, Pereira E. Nanoscale materials and their use in water contaminants removal-a review. Environ Sci Pollut Res. 2013;20(3):1239-1260. doi:10.1007/s11356-012-1415-x
Santos TRT, Andrade MB, Silva MF, Bergamasco R, Hamoudi S. Development of α- and γ-Fe 2 O 3 decorated graphene oxides for glyphosate removal from water. Environ Technol (United Kingdom). 2019;40(9):1118-1137. doi:10.1080/09593330.2017.1411397
Simeonidis K, Mourdikoudis S, Kaprara E, Mitrakas M, Polavarapu L. Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ Sci Water Res Technol. 2016;2(1):43-70. doi:10.1039/c5ew00152h
Feo ML, Bagnati R, Passoni A, et al. Pharmaceuticals and other contaminants in waters and sediments from Augusta Bay (southern Italy). Sci Total Environ. 2020;739:139827. doi:10.1016/j.scitotenv.2020.139827
Shahid M, Nadeem M, Bakhat HF. Environmental toxicology and associated human health risks. Environ Sci Pollut Res. 2020;27(32):39671-39675. doi:10.1007/s11356-020-10516-6
Zhu X, Li B, Yang J, et al. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS Appl Mater Interfaces. 2015;7(1):223-231. doi:10.1021/am5059074
Rodriguez Paez M, Ochoa-Munoz Y, Rodriguez-Paez JE, Páez MRR, Ochoa-Muñoz Y, Rodriguez-Páez JEE. Efficient removal of a glyphosate-based herbicide from water using ZnO nanoparticles (ZnO-NPs). Biocatal Agric Biotechnol. 2019;22:101434. doi:10.1016/j.bcab.2019.101434
Faria JM d L, Guimarães LN, Silva VC d, Lima EC d O. Sabóia-Morais SMT de. Recovery trend to co-exposure of iron oxide nanoparticles (γ-Fe2O3) and glyphosate in liver tissue of the fish Poecilia reticulata. Chemosphere. 2021;282:130993. doi:10.1016/j.chemosphere.2021.130993
Diniz MS, Matos APA, Lourenço J, et al. Liver Alterations in Two Freshwater Fish Species (Carassius auratus and Danio rerio) Following Exposure to Different TiO 2 Nanoparticle Concentrations. Cambridge University Press; 2013. doi:10.1017/S1431927613013238
Qualhato G, Sabóia-Morais SMT, Silva LD, Rocha TL. Melanomacrophage response and hepatic histopathologic biomarkers in the guppy Poecilia reticulata exposed to iron oxide (maghemite) nanoparticles. Aquat Toxicol. 2017;2018(198):63-72. doi:10.1016/j.aquatox.2018.02.014
Mohti A, Shuhaimi-Othman M, Gerhardt A. Use of the multispecies freshwater biomonitor to assess behavioral changes of Poecilia reticulata (Cyprinodontiformes: Poeciliidae) and macrobrachium lanchesteri (Decapoda: Palaemonidae) in response to acid mine drainage: laboratory exposure. J Environ Monit. 2012;14(9):2505-2511. doi:10.1039/c2em10902f
Rabelo JCS, Hanusch AL, de Jesus LWO, et al. DNA damage induced by cylindrospermopsin on different tissues of the biomonitor fish Poecilia reticulata. Environ Toxicol. 2020;2021:1125-1134. doi:10.1002/tox.23111
Karami-Mohajeri S, Ahmadipour A, Rahimi HR, Abdollahi M. Adverse effects of organophosphorus pesticides on the liver: a brief summary of four decades of research. Arh Hig Rada Toksikol. 2017;68(4):261-275. doi:10.1515/aiht-2017-68-2989
Wolf JC, Wolfe MJ. A brief overview of nonneoplastic hepatic toxicity in fish. Toxicol Pathol. 2005;33(1):75-85. doi:10.1080/01926230590890187
Stöck M, Lampert KP, Möller D, et al. Monophyletic origin of multiple clonal lineages in an asexual fish (Poecilia formosa). Mol Ecol. 2010;19(23):5204-5215. doi:10.1111/j.1365-294X.2010.04869.x
Balci BA, Aktop Y. Histological assessment of seasonal gonad maturation of red mullet (Mullus barbatus L., 1758) in Antalya Bay of Mediterranean in Turkey. J Appl Anim Res. 2019;47(1):63-71. doi:10.1080/09712119.2018.1564669
Guagliardo S, Viozzi G, Brugni N. Pathology associated with larval eustrongylides sp. (nematoda: Dioctophymatoidea) infection in galaxias maculatus (actinopterygii: Galaxiidae) from Patagonia, Argentina. Int J Parasitol Parasites Wildl. 2019;10:113-116. doi:10.1016/j.ijppaw.2019.08.004
Mohamed SA, Elshal MF, Kumosani TA, et al. Heavy metal accumulation is associated with molecular and pathological perturbations in liver of Variola louti from the Jeddah coast of red sea. Int J Environ Res Public Health. 2016;13(3):1-11. doi:10.3390/ijerph13030342
Qualhato G, Rocha TL, Lima EC d O, et al. Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata. Chemosphere. 2017;183:305-314. doi:10.1016/j.chemosphere.2017.05.061
Fulton TW. The rate of growth of fishes. 22 Annu Rep Fish Board Scotl. 1904;3:141-241.
OECD. Test no. 203: fish, acute toxicity testing, section 2: effects on biotic systems. Guidel Test Chem. 2019;(203):10.
Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T. Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis. 1999;22(1):25-34. doi:10.1046/j.1365-2761.1999.00134.x
Costa PM, Diniz MS, Caeiro S, et al. Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: a weighted indices approach. Aquat Toxicol. 2009;92(3):202-212. doi:10.1016/j.aquatox.2008.12.009
Santos APR, Rocha TL, Borges CL, Bailão AM, de Almeida Soares CM, de Sabóia-Morais SMT. A glyphosate-based herbicide induces histomorphological and protein expression changes in the liver of the female guppy Poecilia reticulata. Chemosphere. 2017;168:933-943. doi:10.1016/j.chemosphere.2016.10.116
Almeida S d S, Rocha TL, Qualhato G, et al. Acute exposure to environmentally relevant concentrations of benzophenone-3 induced genotoxicity in Poecilia reticulata. Aquat Toxicol. 2019;216:105293. doi:10.1016/j.aquatox.2019.105293
Jia R, Cao LP, Du JL, et al. Effects of high-fat diet on steatosis, endoplasmic reticulum stress and autophagy in liver of tilapia (Oreochromis niloticus). Front Mar Sci. 2020;7:1-14. doi:10.3389/fmars.2020.00363
Spisni E, Tugnoli M, Ponticelli A, Mordenti T, Tomasi V. Hepatic steatosis in artificially fed marine teleosts. J Fish Dis. 1998;21(3):177-184. doi:10.1046/j.1365-2761.1998.00089.x
Maradonna F, Nozzi V, Santangeli S, et al. Xenobiotic-contaminated diets affect hepatic lipid metabolism: implications for liver steatosis in Sparus aurata juveniles. Aquat Toxicol. 2015;167:257-264. doi:10.1016/j.aquatox.2015.08.006
Antunes AM, Rocha TL, Pires FS, et al. Gender-specific histopathological response in guppies Poecilia reticulata exposed to glyphosate or its metabolite aminomethylphosphonic acid. J Appl Toxicol. 2017;37(9):1098-1107. doi:10.1002/jat.3461
Abdel-Moneim AM, Essawy AE, El-Din NKB, El-Naggar NM. Biochemical and histopathological changes in liver of the Nile tilapia from Egyptian polluted lakes. Toxicol Ind Health. 2016;32(3):457-467. doi:10.1177/0748233713503374
Sayed AH, Abd-Elkareem M, Abou Khalil NS. Immunotoxic effects of 4-nonylphenol on Clarias gariepinus: Cytopathological changes in hepatic melanomacrophages. Aquat Toxicol. 2018;2019(207):83-90. doi:10.1016/j.aquatox.2018.12.002
Passantino L, Santamaria N, Zupa R, et al. Liver melanomacrophage centres as indicators of Atlantic bluefin tuna, Thunnus thynnus L. well-being. J Fish Dis. 2014;37(3):241-250. doi:10.1111/jfd.12102
van Wettere AJ, Mac LJ, Hinton DE, Kullman SW. Anchoring hepatic gene expression with development of fibrosis and neoplasia in a toxicant-induced fish model of liver injury. Toxicol Pathol. 2013;41(5):744-760. doi:10.1177/0192623312464308
Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019;15(6):346-366. doi:10.1038/s41581-019-0129-4
Yamakawa N, Vanbeselaere J, Chang L-Y, et al. Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns. Nat Commun. 2018;9(1):4647. doi:10.1038/s41467-018-06950-3
Naguib M, Mahmoud UM, Mekkawy IA, Sayed AEH. Hepatotoxic e ff ects of silver nanoparticles on Clarias gariepinus; biochemical, histopathological, and histochemical studies. Toxicol Reports. 2020;7:133-141. doi:10.1016/j.toxrep.2020.01.002
Gaber HS, Ibrahim SA, El-Kasheif MA. Histopathological and histochemical changes in the liver of Bagrus bayad caused by environmental pollution. Toxicol Ind Health. 2015;31(9):852-861. doi:10.1177/0748233713484653
Egnew N, Renukdas N, Romano N, et al. Physio-biochemical, metabolic nitrogen excretion and ion-regulatory assessment in largemouth bass (Micropterus salmoides) following exposure to high environmental iron. Ecotoxicol Environ Saf. 2021;208:111526. doi:10.1016/j.ecoenv.2020.111526
Shiogiri NS, Paulino MG, Carraschi SP, Baraldi FG, Cruz C, Fernandes MN. Acute exposure of a glyphosate-based herbicide affects the gills and liver of the Neotropical fish, Piaractus mesopotamicus. Environ Toxicol Pharmacol. 2012;34(2):388-396. doi:10.1016/j.etap.2012.05.007
Moura FR, Lima RRS, Cunha APS, et al. Effects of glyphosate-based herbicide on pintado da Amazônia: hematology, histological aspects, metabolic parameters and genotoxic potential. Environ Toxicol Pharmacol. 2017;56:241-248. doi:10.1016/j.etap.2017.09.019
Yancheva V, Velcheva I, Stoyanova S, et al. Toxicity of two organophosphorous pesticides on bighead carp (Aristichthys nobilis Richardson, 1845) liver. Appl Ecol Environ Res. 2016;14(1):397-410. doi:10.15666/aeer/1401_397410
Sánchez JAA, Klosterhoff MC, Romano LA, Martins CDMG. Histological evaluation of vital organs of the livebearer Jenynsia multidentata (Jenyns, 1842) exposed to glyphosate: a comparative analysis of roundup® formulations. Chemosphere. 2019;217:914-924. doi:10.1016/j.chemosphere.2018.11.020
Navarro CDC, Martinez CBR. Effects of the surfactant polyoxyethylene amine (POEA) on genotoxic, biochemical and physiological parameters of the freshwater teleost Prochilodus lineatus. Comp Biochem Physiol Part - C Toxicol Pharmacol. 2014;165:83-90. doi:10.1016/j.cbpc.2014.06.003
Rodrigues L, Gonçalves Costa G, Thá EL, et al. Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutat Res Toxicol Environ Mutagen. 2019;842:94-101. doi:10.1016/j.mrgentox.2019.05.002
Guilherme S, Santos MA, Barroso C, Gaivão I, Pacheco M. Differential genotoxicity of roundup® formulation and its constituents in blood cells of fish (Anguilla Anguilla): considerations on chemical interactions and DNA damaging mechanisms. Ecotoxicology. 2012;21(5):1381-1390. doi:10.1007/s10646-012-0892-5
Trigueiro NS d S, Gonçalves BB, Dias FC, Lima ECO, Rocha TL, Sabóia-Morais SMT. Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide induces DNA damage and mutagenic effects in the guppy (Poecilia reticulata). Environ Toxicol Pharmacol. 2021;81:103521. doi:10.1016/j.etap.2020.103521
Macêdo AKS, Dos SKPE, Brighenti LS, et al. Histological and molecular changes in gill and liver of fish (Astyanax lacustris Lütken, 1875) exposed to water from the Doce basin after the rupture of a mining tailings dam in Mariana, MG. Brazil Sci Total Environ. 2020;735:139505. doi:10.1016/j.scitotenv.2020.139505
Savassi LA, Paschoalini AL, Arantes FP, Rizzo E, Bazzoli N. Heavy metal contamination in a highly consumed Brazilian fish: immunohistochemical and histopathological assessments. Environ Monit Assess. 2020;192(8):542. doi:10.1007/s10661-020-08515-8
Moraes BS, Loro VL, Glusczak L, et al. Effects of four rice herbicides on some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens). Chemosphere. 2007;68(8):1597-1601. doi:10.1016/j.chemosphere.2007.03.006
Gandahi NS, Gandahi JA, Yang P, et al. Ultrastructural evidence of Melanomacrophagic centers and lipofuscin in the liver of zebrafish (Denio rerio). Zebrafish. 2020;17(2):83-90. doi:10.1089/zeb.2019.1826
Costa PM, Caeiro S, Lobo J, et al. Estuarine ecological risk based on hepatic histopathological indices from laboratory and in situ tested fish. Mar Pollut Bull. 2011;62(1):55-65. doi:10.1016/j.marpolbul.2010.09.009
Samanta P, Kumari P, Pal S, Mukherjee A, Ghosh A. Histopathological and ultrastructural alterations in some organs of Oreochromis niloticus exposed to glyphosate-based herbicide, excel mera 71. J Microsc Ultrastruct. 2018;6(1):35-43. doi:10.4103/jmau.jmau_8_18

Auteurs

Lunara Kênida Lessa Martins (LKL)

Laboratory of Cellular Behavior, Federal University of Goiás, Goiânia, Brazil.

João Marcos de Lima-Faria (JM)

Laboratory of Cellular Behavior, Federal University of Goiás, Goiânia, Brazil.

Lucas Nunes Guimarães (LN)

Laboratory of Cellular Behavior, Federal University of Goiás, Goiânia, Brazil.

Victória Costa da Silva (VCD)

Laboratory of Cellular Behavior, Federal University of Goiás, Goiânia, Brazil.

Paulo Cesar Moreira (PC)

Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil.

Simone Maria Teixeira de Sabóia-Morais (SMT)

Laboratory of Cellular Behavior, Federal University of Goiás, Goiânia, Brazil.
Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH