Pyrazolopyridine: An efficient pharmacophore in recent drug design and development.
Pyrazolopyridine
anticancer activity
antimicrobial activity
neuroprotective activity
structure-activity relationship
Journal
Chemical biology & drug design
ISSN: 1747-0285
Titre abrégé: Chem Biol Drug Des
Pays: England
ID NLM: 101262549
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
25
05
2022
received:
15
03
2022
accepted:
29
05
2022
pubmed:
7
6
2022
medline:
12
8
2022
entrez:
6
6
2022
Statut:
ppublish
Résumé
Among the various heterocyclic molecules employed for drug design and discovery, pyrazolopyridine is one of the promising pharmacophores. Pyrazolopyridine is a result of fusion of pyrazole and pyridine rings. The potent pharmacology of pyrazolopyridine may be the synergistic effect of pyrazole and pyridine moieties in a single framework. It has been used in drug design of a wide range of diseases such as anticancer, antimicrobial, anti-inflammatory, and neuroprotection. Cancer has become a common disease among elderly people now a days that might be because of genetic inheritance to some extent, carcinogens, pollution, and some infectious diseases. Whatever may be the reason, cancer is one of the major causes of deaths worldwide. In addition, over-usage and improper usage of antibiotics have led to drug resistance of microbes. Further, inflammation is a cause of various diseases such as arthritis, and other diseases. Thus, proinflammatory kinases are considered as primary target for inhibition of inflammation. In view of this, a work that compiles potent pharmacology of recently reported pyrazolopyridine analogs has been planned. The review is aimed to discuss pharmacology in brief along with structure-activity relationship (SAR). The review would emphasize importance of pyrazolopyridines in future drug design and discovery and may help in design of potent pharmacological agents.
Substances chimiques
Pyrazoles
0
Pyridines
0
pyrazolopyridine
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
376-388Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
Abbas, H.-A. S., el Sayed, W. A., & Fathy, N. M. (2010). Synthesis and antitumor activity of new dihydropyridine thioglycosides and their corresponding dehydrogenated forms. European Journal of Medicinal Chemistry, 45(3), 973-982. https://doi.org/10.1016/j.ejmech.2009.11.039
Abbasi, T., & Garcia, J. G. N. (2013). Sphingolipids in lung endothelial biology and regulation of vascular integrity. In Handbook of experimental pharmacology (Vol. 216, pp. 201-226). Springer. https://doi.org/10.1007/978-3-7091-1511-4_10
Abdel-latif, E., Abdel-fattah, S., Gaffer, H. E., & Etman, H. A. (2016). Synthesis and antitumor activity of some new pyrazolo[3,4-d]pyrimidine and pyrazolo[3,4-b]pyridine derivatives. Egyptian Journal of Basic and Applied Sciences, 3(1), 118-124. https://doi.org/10.1016/j.ejbas.2015.11.001
Abdel-Monem, Y. K., Abou El-Enein, S. A., & El-Sheikh-Amer, M. M. (2017). Design of new metal complexes of 2-(3-amino-4,6-dimethyl-1H-pyrazolo[3,4-b]pyridin-1-yl)aceto-hydrazide: Synthesis, characterization, modelling and antioxidant activity. Journal of Molecular Structure, 1127, 386-396. https://doi.org/10.1016/j.molstruc.2016.07.110
Abdelmonem, Y. K., El-Essawy, F. A., Abou El-Enein, S. A., & El-Sheikh-Amer, M. M. (2013). Docking studies, synthesis, and evaluation of antioxidant activities of N-alkylated, 1,2,4-triazole, 1,3,4-oxa-, and thiadiazole containing the aminopyrazolopyridine derivatives. International Journal of Organic Chemistry, 3(3), 198-205. https://doi.org/10.4236/ijoc.2013.33026
Abdel-Rahman, A. A.-H., Shaban, A. K. F., Nassar, I. F., EL-Kady, D. S., Ismail, N. S. M., Mahmoud, S. F., Awad, H. M., & El-Sayed, W. A. (2021). Discovery of new pyrazolopyridine, furopyridine, and pyridine derivatives as CDK2 inhibitors: Design, synthesis, docking studies, and anti-proliferative activity. Molecules, 26(13), 3923. https://doi.org/10.3390/molecules26133923
Abdel-Rahman, S. A., El-Gohary, N. S., El-Bendary, E. R., El-Ashry, S. M., & Shaaban, M. I. (2017). Synthesis, antimicrobial, antiquorum-sensing, antitumor and cytotoxic activities of new series of cyclopenta(hepta)[b]thiophene and fused cyclohepta[b]thiophene analogs. European Journal of Medicinal Chemistry, 140, 200-211. https://doi.org/10.1016/j.ejmech.2017.08.066
Abu-Zaied, M. A., El-Telbani, E. M., Elgemeie, G. H., & Nawwar, G. A. M. (2011). Synthesis and in vitro anti-tumor activity of new oxadiazole thioglycosides. European Journal of Medicinal Chemistry, 46(1), 229-235. https://doi.org/10.1016/j.ejmech.2010.11.008
Alachkar, H., Mutonga, M. B. G., Metzeler, K. H., Fulton, N., Malnassy, G., Herold, T., Spiekermann, K., Bohlander, S. K., Hiddemann, W., Matsuo, Y., Stock, W., & Nakamura, Y. (2014). Preclinical efficacy of maternal embryonic leucine-zipper kinase (MELK) inhibition in acute myeloid leukemia. Oncotarget, 5(23), 12371-12382. https://doi.org/10.18632/oncotarget.2642
Alminderej, F. M., Elganzory, H. H., El-Bayaa, M. N., Awad, H. M., & El-Sayed, W. A. (2019). Synthesis and cytotoxic activity of new 1,3,4-thiadiazole thioglycosides and 1,2,3-triazolyl-1,3,4-thiadiazole N-glycosides. Molecules, 24(20), 3738. https://doi.org/10.3390/molecules24203738
Anand, D., Yadav, P. K., Patel, O. P. S., Parmar, N., Maurya, R. K., Vishwakarma, P., Raju, K. S., Taneja, I., Wahajuddin, M., Kar, S., & Yadav, P. P. (2017). Antileishmanial activity of pyrazolopyridine derivatives and their potential as an adjunct therapy with miltefosine. Journal of Medicinal Chemistry, 60(3), 1041-1059. https://doi.org/10.1021/acs.jmedchem.6b01447
Ball, J., Archer, S., & Ward, S. (2014). PI3K inhibitors as potential therapeutics for autoimmune disease. Drug Discovery Today, 19(8), 1195-1199. https://doi.org/10.1016/j.drudis.2014.04.002
Bare, T. M., McLaren, C. D., Campbell, J. B., Firor, J. W., Resch, J. F., Walters, C. P., Salama, A. I., Meiners, B. A., & Patel, J. B. (1989). Synthesis and structure-activity relationships of a series of anxioselective pyrazolopyridine ester and amide anxiolytic agents. Journal of Medicinal Chemistry, 32(12), 2561-2573. https://doi.org/10.1021/jm00132a011
Bekhit, A. A., Ashour, H. M. A., & Guemei, A. A. (2005). Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Archiv der Pharmazie, 338(4), 167-174. https://doi.org/10.1002/ardp.200400940
Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M., & Qazi, G. N. (2005). Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents. Bioorganic & Medicinal Chemistry Letters, 15(12), 3177-3180. https://doi.org/10.1016/j.bmcl.2005.03.121
Bristow, D. R., & Martin, I. L. (1990). Biochemical characterization of an isolated and functionally reconstituted?-Aminobutyric acid/benzodiazepine receptor. Journal of Neurochemistry, 54(3), 751-761. https://doi.org/10.1111/j.1471-4159.1990.tb02315.x
Chen, J., Pang, L., Wang, W., Wang, L., Zhang, J. Z. H., & Zhu, T. (2020). Decoding molecular mechanism of inhibitor bindings to CDK2 using molecular dynamics simulations and binding free energy calculations. Journal of Biomolecular Structure and Dynamics, 38(4), 985-996. https://doi.org/10.1080/07391102.2019.1591304
Compston, A., & Coles, A. (2008). Multiple sclerosis. The Lancet, 372(9648), 1502-1517. https://doi.org/10.1016/S0140-6736(08)61620-7
Dandia, A., Laxkar, A., & Singh, R. (2012). New multicomponent domino reaction on water: Highly diastereoselective synthesis of spiro(indoline-3,4′-pyrazolo[3,4-b]pyridines) catalyzed by NaCl. Tetrahedron Letters, 53(24), 3012-3017. https://doi.org/10.1016/j.tetlet.2012.03.136
de Mello, H., Echevarria, A., Bernardino, A. M., Canto-Cavalheiro, M., & Leon, L. L. (2004). Antileishmanial pyrazolopyridine derivatives: Synthesis and structure-activity relationship analysis. Journal of Medicinal Chemistry, 47(22), 5427-5432. https://doi.org/10.1021/jm0401006
Eissa, I. H., El-Naggar, A. M., & El-Hashash, M. A. (2016). Design, synthesis, molecular modeling and biological evaluation of novel 1H-pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents. Bioorganic Chemistry, 67, 43-56. https://doi.org/10.1016/j.bioorg.2016.05.006
Elgemeie, G., Abou-Zeid, M., Alsaid, S., Hebishy, A., & Essa, H. (2015). Novel nucleoside analogues: First synthesis of pyridine-4-thioglycosides and their cytotoxic evaluation. Nucleosides, Nucleotides and Nucleic Acids, 34(10), 659-673. https://doi.org/10.1080/15257770.2015.1071843
Elgemeie, G., Abu-Zaied, M., & Azzam, R. (2016). Antimetabolites: A first synthesis of a new class of cytosine thioglycoside analogs. Nucleosides, Nucleotides and Nucleic Acids, 35(4), 211-222. https://doi.org/10.1080/15257770.2015.1127961
Elgemeie, G. H., Abu-Zaied, M. A., & Loutfy, S. A. (2017). 4-Aminoantipyrine in carbohydrate research: Design, synthesis and anticancer activity of thioglycosides of a novel class of 4-aminoantipyrines and their corresponding pyrazolopyrimidine and pyrazolopyridine thioglycosides. Tetrahedron, 73(40), 5853-5861. https://doi.org/10.1016/j.tet.2017.08.024
El-Gohary, N. S., & Shaaban, M. I. (2017). Synthesis and biological evaluation of a new series of benzimidazole derivatives as antimicrobial, antiquorum-sensing and antitumor agents. European Journal of Medicinal Chemistry, 131, 255-262. https://doi.org/10.1016/j.ejmech.2017.03.018
El-Gohary, N. S., & Shaaban, M. I. (2018a). Design, synthesis, antimicrobial, antiquorum-sensing and antitumor evaluation of new series of pyrazolopyridine derivatives. European Journal of Medicinal Chemistry, 157, 729-742. https://doi.org/10.1016/j.ejmech.2018.08.008
El-Gohary, N. S., & Shaaban, M. I. (2018b). New pyrazolopyridine analogs: Synthesis, antimicrobial, antiquorum-sensing and antitumor screening. European Journal of Medicinal Chemistry, 152, 126-136. https://doi.org/10.1016/j.ejmech.2018.04.025
El-Sattar, N. E. A. A., Badawy, E. H. K., AbdEl-Hady, W. H., Abo-Alkasem, M. I., Mandour, A. A., & Ismail, N. S. M. (2021). Design and synthesis of new CDK2 inhibitors containing thiazolone and thiazolthione scafold with apoptotic activity. Chemical and Pharmaceutical Bulletin, 69(1), 106-117. https://doi.org/10.1248/cpb.c20-00714
El-Sayed, W. A., Khalaf, H. S., Mohamed, S. F., Hussien, H. A., Kutkat, O. M., & Amr, A. E. (2017). Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. Russian Journal of General Chemistry, 87(10), 2444-2453. https://doi.org/10.1134/S1070363217100279
Fayed, A. A., Bahashwan, S. A., Yousif, M. N. M., Shafey, H. M., Amr, A. E., Yousif, N. M., & Shadid, K. A. (2019). Synthesis and antiproliferative activity of some newly synthesized pyrazolopyridine derivatives. Russian Journal of General Chemistry, 89(6), 1209-1217. https://doi.org/10.1134/S1070363219060173
Geraldo, R., Bello, M., Dias, L., Vera, M., Nagashima, T., Abreu, P., Santos, M. B., Albuquerque, M. G., Cabral, L. M., Freitas, A. C., Kalil, M. V., Rodrigues, C. R., & Castro, H. (2010). Antiplatelet activity and structure-activity relationship study of pyrazolopyridine derivatives as potential series for treating thrombotic diseases. Journal of Atherosclerosis and Thrombosis, 17(7), 730-739. https://doi.org/10.5551/jat.3293
Hamajima, T., Takahashi, F., Kato, K., Mukoyoshi, K., Yoshihara, K., Yamaki, S., Sugano, Y., Moritomo, A., Yamagami, K., Yokoo, K., & Fukahori, H. (2018). Discovery and biological evaluation of novel pyrazolopyridine derivatives as potent and orally available PI3Kδ inhibitors. Bioorganic & Medicinal Chemistry, 26(9), 2410-2419. https://doi.org/10.1016/j.bmc.2018.03.042
Inoue, H., Kato, T., Olugbile, S., Tamura, K., Chung, S., Miyamoto, T., Matsuo, Y., Salgia, R., Nakamura, Y., & Park, J.-H. (2016). Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer. Oncotarget, 7(12), 13621-13633. https://doi.org/10.18632/oncotarget.7297
Jouha, J., Loubidi, M., Bouali, J., Hamri, S., Hafid, A., Suzenet, F., Guillaumet, G., Dagcı, T., Khouili, M., Aydın, F., Saso, L., & Armagan, G. (2017). Synthesis of new heterocyclic compounds based on pyrazolopyridine scaffold and evaluation of their neuroprotective potential in MPP+-induced neurodegeneration. European Journal of Medicinal Chemistry, 129, 41-52. https://doi.org/10.1016/j.ejmech.2017.02.019
Kassem, Z. B., Merhi, R., & Issa, D. (2021). Discovery of pyrazolopyridine derivatives dually targeting inflammation and proliferation in colorectal cancer cell lines: In-silico drug design approach. BAU Journal-Health and Wellbeing, 4(1), Art. 4.
Kato, T., Inoue, H., Imoto, S., Tamada, Y., Miyamoto, T., Matsuo, Y., Nakamura, Y., & Park, J.-H. (2016). Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells. Oncotarget, 7(14), 17652-17664. https://doi.org/10.18632/oncotarget.7755
Komatsu, M., Yoshimaru, T., Matsuo, T., Kiyotani, K., Miyoshi, Y., Tanahashi, T., Rokutan, K., Yamaguchi, R., Saito, A., Imoto, S., Miyano, S., Nakamura, Y., Sasa, M., Shimada, M., & Katagiri, T. (2013). Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis. International Journal of Oncology, 42(2), 478-506. https://doi.org/10.3892/ijo.2012.1744
Kumar, S. V., Muthusubramanian, S., & Perumal, S. (2019). Recent progress in the synthesis of pyrazolopyridines and their derivatives. Organic Preparations and Procedures International, 51(1), 1-89. https://doi.org/10.1080/00304948.2018.1542517
Lourenço, A. L., Salvador, R. R. S., Silva, L. A., Saito, M. S., Mello, J. F. R., Cabral, L. M., Rodrigues, C. R., Vera, M. A. F., Muri, E. M. F., de Souza, A. M. T., Craik, C. S., Dias, L. R. S., Castro, H. C., & Sathler, P. C. (2017). Synthesis and mechanistic evaluation of novel N′-benzylidene-carbohydrazide-1 H-pyrazolo[3,4-b]pyridine derivatives as non-anionic antiplatelet agents. European Journal of Medicinal Chemistry, 135, 213-229. https://doi.org/10.1016/j.ejmech.2017.04.023
Luo, Z., Yue, X., Yang, H., Liu, H., Klein, R. S., & Tu, Z. (2018). Design and synthesis of pyrazolopyridine derivatives as sphingosine 1-phosphate receptor 2 ligands. Bioorganic & Medicinal Chemistry Letters, 28(3), 488-496. https://doi.org/10.1016/j.bmcl.2017.12.010
Marcade, M., Bourdin, J., Loiseau, N., Peillon, H., Rayer, A., Drouin, D., Schweighoffer, F., & Désiré, L. (2008). Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. Journal of Neurochemistry, 106(1), 392-404. https://doi.org/10.1111/j.1471-4159.2008.05396.x
Meijer, L., Flajolet, M., & Greengard, P. (2004). Pharmacological inhibitors of glycogen synthase kinase 3. Trends in Pharmacological Sciences, 25(9), 471-480. https://doi.org/10.1016/j.tips.2004.07.006
Osada, M., Yatomi, Y., Ohmori, T., Ikeda, H., & Ozaki, Y. (2002). Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. Biochemical and Biophysical Research Communications, 299(3), 483-487. https://doi.org/10.1016/S0006-291X(02)02671-2
Park, C. M., Jadhav, V. B., Song, J.-H., Lee, S., Won, H. Y., Choi, S. U., & Son, Y. H. (2017). 3-Amino-1 H-pyrazolopyridine derivatives as a maternal embryonic leucine zipper kinase inhibitor. Bulletin of the Korean Chemical Society, 38(6), 595-602. https://doi.org/10.1002/bkcs.11129
Patel, J. B., Malick, J. B., Salama, A. I., & Goldberg, M. E. (1985). Pharmacology of pyrazolopyridines. Pharmacology Biochemistry and Behavior, 23(4), 675-680. https://doi.org/10.1016/0091-3057(85)90436-8
Peyressatre, M., Prével, C., Pellerano, M., & Morris, M. (2015). Targeting cyclin-dependent kinases in human cancers: From small molecules to peptide inhibitors. Cancers, 7(1), 179-237. https://doi.org/10.3390/cancers7010179
Quiroga, J., Portillo, S., Pérez, A., Gálvez, J., Abonia, R., & Insuasty, B. (2011). An efficient synthesis of pyrazolo[3,4-b]pyridine-4-spiroindolinones by a three-component reaction of 5-aminopyrazoles, isatin, and cyclic β-diketones. Tetrahedron Letters, 52(21), 2664-2666. https://doi.org/10.1016/j.tetlet.2011.03.067
Rashad, A. E., Mahmoud, A. E., & Ali, M. M. (2011). Synthesis and anticancer effects of some novel pyrazolo[3,4-d]pyrimidine derivatives by generating reactive oxygen species in human breast adenocarcinoma cells. European Journal of Medicinal Chemistry, 46(4), 1019-1026. https://doi.org/10.1016/j.ejmech.2011.01.013
Ravula, S., Bobbala, R. R., & Kolli, B. (2020). Synthesis of novel isoxazole functionalized pyrazolo[3,4-b]pyridine derivatives; their anticancer activity. Journal of Heterocyclic Chemistry, 57(6), 2535-2538. https://doi.org/10.1002/jhet.3968
Saamanthi, M., Aruna, S., Girija, R., & Vinod, D. (2021). Design, synthesis novel Pyrazolopyridine derivatives and CREBBP bromodomain inhibitors docking and molecular dynamics. Materials Today: Proceedings, 45, 7200-7207. https://doi.org/10.1016/j.matpr.2021.02.416
Sabat, M., Wang, H., Scorah, N., Lawson, J. D., Atienza, J., Kamran, R., Hixon, M. S., & Dougan, D. R. (2017). Design, synthesis and optimization of 7-substituted-pyrazolo[4,3-b]pyridine ALK5 (activin receptor-like kinase 5) inhibitors. Bioorganic & Medicinal Chemistry Letters, 27(9), 1955-1961. https://doi.org/10.1016/j.bmcl.2017.03.026
Umar, T., Shalini, S., Raza, M. K., Gusain, S., Kumar, J., Seth, P., Tiwari, M., & Hoda, N. (2019). A multifunctional therapeutic approach: Synthesis, biological evaluation, crystal structure and molecular docking of diversified 1H-pyrazolo[3,4-b]pyridine derivatives against Alzheimer's disease. European Journal of Medicinal Chemistry, 175, 2-19. https://doi.org/10.1016/j.ejmech.2019.04.038
Williams, M. (1983). Anxioselective anxiolytics. Journal of Medicinal Chemistry, 26(5), 619-628. https://doi.org/10.1021/jm00359a001
Witherington, J., Bordas, V., Gaiba, A., Naylor, A., Rawlings, A. D., Slingsby, B. P., Smith, D. G., Takle, A. K., & Ward, R. W. (2003a). 6-Heteroaryl-pyrazolo[3,4-b]pyridines: Potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorganic & Medicinal Chemistry Letters, 13(18), 3059-3062. https://doi.org/10.1016/S0960-894X(03)00646-2
Witherington, J., Bordas, V., Haigh, D., Hickey, D. M. B., Ife, R. J., Rawlings, A. D., Slingsby, B. P., Smith, D. G., & Ward, R. W. (2003b). 5-Aryl-pyrazolo[3,4-b]pyridazines: Potent inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorganic & Medicinal Chemistry Letters, 13(9), 1581-1584. https://doi.org/10.1016/S0960-894X(03)00135-5
Xing, Y., Zuo, J., Krogstad, P., & Jung, M. E. (2018). Synthesis and structure-activity relationship (SAR) studies of novel pyrazolopyridine derivatives as inhibitors of enterovirus replication. Journal of Medicinal Chemistry, 61(4), 1688-1703. https://doi.org/10.1021/acs.jmedchem.7b01863
Yagnam, S., Akondi, A. M., Trivedi, R., Rathod, B., Prakasham, R. S., & Sridhar, B. (2018). Spirooxindole-fused pyrazolo pyridine derivatives: NiO-SiO2 catalyzed one-pot synthesis and antimicrobial activities. Synthetic Communications, 48(3), 255-266. https://doi.org/10.1080/00397911.2017.1393687
Zuo, J., Kye, S., Quinn, K. K., Cooper, P., Damoiseaux, R., & Krogstad, P. (2016). Discovery of structurally diverse small-molecule compounds with broad antiviral activity against enteroviruses. Antimicrobial Agents and Chemotherapy, 60(3), 1615-1626. https://doi.org/10.1128/AAC.02646-15