Identification of ADS024, a newly characterized strain of Bacillus velezensis with direct Clostridiodes difficile killing and toxin degradation bio-activities.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 06 2022
03 06 2022
Historique:
received:
06
10
2021
accepted:
23
05
2022
entrez:
6
6
2022
pubmed:
7
6
2022
medline:
9
6
2022
Statut:
epublish
Résumé
Clostridioides difficile infection (CDI) remains a significant health threat worldwide. C. difficile is an opportunistic, toxigenic pathogen that takes advantage of a disrupted gut microbiome to grow and produce signs and symptoms ranging from diarrhea to pseudomembranous colitis. Antibiotics used to treat C. difficile infection are usually broad spectrum and can further disrupt the commensal gut microbiota, leaving patients susceptible to recurrent C. difficile infection. There is a growing need for therapeutic options that can continue to inhibit the outgrowth of C. difficile after antibiotic treatment is completed. Treatments that degrade C. difficile toxins while having minimal collateral impact on gut bacteria are also needed to prevent recurrence. Therapeutic bacteria capable of producing a range of antimicrobial compounds, proteases, and other bioactive metabolites represent a potentially powerful tool for preventing CDI recurrence following resolution of symptoms. Here, we describe the identification and initial characterization of ADS024 (formerly ART24), a novel therapeutic bacterium that can kill C. difficile in vitro with limited impact on other commensal bacteria. In addition to directly killing C. difficile, ADS024 also produces proteases capable of degrading C. difficile toxins, the drivers of symptoms associated with most cases of CDI. ADS024 is in clinical development for the prevention of CDI recurrence as a single-strain live biotherapeutic product, and this initial data set supports further studies aimed at evaluating ADS024 in future human clinical trials.
Identifiants
pubmed: 35662257
doi: 10.1038/s41598-022-13248-4
pii: 10.1038/s41598-022-13248-4
pmc: PMC9166764
doi:
Substances chimiques
Anti-Bacterial Agents
0
Peptide Hydrolases
EC 3.4.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9283Informations de copyright
© 2022. The Author(s).
Références
Ramirez, J. et al. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 10, 572912 (2020).
pubmed: 33330122
pmcid: 7732679
doi: 10.3389/fcimb.2020.572912
Koppel, N. & Balskus, E. P. Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem. Biol. 23, 18–30 (2016).
pubmed: 26933733
doi: 10.1016/j.chembiol.2015.12.008
Martín, R. et al. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb. Cell Fact. 12, 71 (2013).
pubmed: 23876056
pmcid: 3726476
doi: 10.1186/1475-2859-12-71
Donia, M. S. & Fischbach, M. A. Human microbiota: small molecules from the human microbiota. Science 349, 1254766 (2015).
pubmed: 26206939
pmcid: 4641445
doi: 10.1126/science.1254766
Robinson, C. J., Bohannan, B. J. & Young, V. B. From structure to function: the ecology of host-associated microbial communities. Microbiol. Mol. Biol. Rev. 74, 453–476 (2010).
pubmed: 20805407
pmcid: 2937523
doi: 10.1128/MMBR.00014-10
Lee, Y. K. & Mazmanian, S. K. Has the microbiota played a critical role in the evolution of the adaptive immune system?. Science 330, 1768–1773 (2010).
pubmed: 21205662
pmcid: 3159383
doi: 10.1126/science.1195568
Song, J. H. & Kim, Y. S. Recurrent Clostridium difficile infection: risk factors, treatment, and prevention. Gut Liver. 13, 16–24. https://doi.org/10.5009/gnl18071 (2019).
doi: 10.5009/gnl18071
pubmed: 30400734
Kim, D., Zeng, M. Y. & Núñez, G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp. Mol. Med. 49, e339–e339 (2017).
pubmed: 28546562
pmcid: 5454439
doi: 10.1038/emm.2017.24
Guh, A. & Kutty, P. K. Clostridioides difficile infection. Ann. Intern. Med. 169, ITC4–ITC64 (2018).
Zhu, D., Sorg, J. A. & Sun, X. Clostridioides difficile biology: sporulation, germination, and corresponding therapies for C. difficile infection. Front. Cell Infect. Microbiol. 8, 8–29 (2018).
doi: 10.3389/fcimb.2018.00029
Gerding, D. N. et al. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes. 5, 15–27 (2014).
pubmed: 24253566
doi: 10.4161/gmic.26854
Thomas, C., Stevenson, M. & Riley, T. V. Antibiotics and hospital-acquired Clostridium difficile-associated diarrhea: a systematic review. J. Antimicrob. Chemother. 51, 1339–1350 (2003).
pubmed: 12746372
doi: 10.1093/jac/dkg254
Loo, V. G. et al. Host and pathogen factors for Clostridium difficile infection and colonization. N. Engl. J. Med. 365, 1693–1703 (2011).
pubmed: 22047560
doi: 10.1056/NEJMoa1012413
Britton, R. A. & Young, V. B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 146, 1547–1553 (2014).
pubmed: 24503131
doi: 10.1053/j.gastro.2014.01.059
Awad, M. M. et al. D. Clostridium difficile virulence factors: insights into an anaerobic spore-forming pathogen. Gut Microbes. 5, 579–593 (2014).
pubmed: 25483328
pmcid: 4615314
doi: 10.4161/19490976.2014.969632
Johnson, S. et al. Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. N. Engl. J. Med. 341, 1645–1651 (1999).
pubmed: 10572152
doi: 10.1056/NEJM199911253412203
McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, e1–e48 (2018).
pubmed: 29462280
pmcid: 6018983
doi: 10.1093/cid/cix1085
Kelly, C. P. Can we identify patients at high risk of recurrent Clostridium difficile infection?. Clin. Microbiol. Infect. 18(Suppl. 6), 21–27 (2012).
pubmed: 23121551
doi: 10.1111/1469-0691.12046
Johnson, S. et al. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin Infect Dis. 73, e1029–e1044 (2021).
pubmed: 34164674
doi: 10.1093/cid/ciab549
Ramsay, I., Brown, N. M. & Enoch, D. A. Recent progress for the effective prevention and treatment of recurrent Clostridium difficile infection. Infect. Dis. Res. Treat. 11, 1178633718758023 (2018).
Peng, Z. et al. Advances in the diagnosis and treatment of Clostridium difficile infections. Emerg. Microbes Infect. 7, 1–13 (2018).
doi: 10.1038/s41426-017-0019-4
Kociolek, L. K. & Gerding, D. N. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat. Rev. Gastroenterol. Hepatol. 13, 150–160 (2016).
pubmed: 26860266
doi: 10.1038/nrgastro.2015.220
DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).
pubmed: 31665575
doi: 10.1056/NEJMoa1910437
Khanna, S. et al. RBX7455, a non-frozen, orally administered investigational live biotherapeutic, is safe, effective, and shifts patients’ microbiomes in a phase 1 study for recurrent Clostridioides difficile infections. Clin. Infect. Dis. 73, e1613–e1620 (2021).
pubmed: 32966574
doi: 10.1093/cid/ciaa1430
Khanna, S. Microbiota restoration for recurrent Clostridioides difficile: Getting one step closer every day!. J. Intern. Med. 290, 294–309 (2021).
pubmed: 33856727
doi: 10.1111/joim.13290
Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).
pubmed: 35045228
doi: 10.1056/NEJMoa2106516
Tamang, J. P., Watanabe, K. & Holzapfel, W. H. Review: diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 7, 377 (2016).
pubmed: 27047484
pmcid: 4805592
doi: 10.3389/fmicb.2016.00377
Jernberg, C., Löfmark, S., Edlund, C. & Jansson, JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007). [published correction appears in ISME J. 7, 456 (2013)].
Fan, B., Blom, J., Klenk, H. P. & Borriss, R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex. Front. Microbiol. 8, 22 (2017).
pubmed: 28163698
pmcid: 5247444
doi: 10.3389/fmicb.2017.00022
Chen, X. H. et al. Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014 (2007).
pubmed: 17704766
doi: 10.1038/nbt1325
Huy, D. N. A., Hao, P. A. & Hung, P. V. Screening and identification of Bacillus sp. isolated from traditional Vietnamese soybean-fermented products for high fibrinolytic enzyme production. Int. Food Res. J. (Malaysia). 23, 326–331 (2016).
Cho, S. J., Oh, S. H., Pridmore, R. D., Juillerat, M. A. & Lee, C. H. Purification and characterization of proteases from Bacillus amyloliquefaciens isolated from traditional soybean fermentation starter. J. Agric. Food Chem. 51, 7664–7670 (2003).
pubmed: 14664526
doi: 10.1021/jf0259314
Chun, B. H., Kim, K. H., Jeong, S. E. & Jeon, C. O. Genomic and metabolic features of the Bacillus amyloliquefaciens group—B. amyloliquefaciens, B. velezensis, and B. siamensis—revealed by pan-genome analysis. Food Microbiol. 77, 146–157 (2019).
pubmed: 30297045
doi: 10.1016/j.fm.2018.09.001
Geeraerts, S., Ducatelle, R., Haesebrouck, F. & Immerseel, F. V. Bacillus amyloliquefaciens as prophylactic treatment for Clostridium difficile-associated disease in a mouse model. J. Gastroenterol. Hepatol. 30, 1275–1280 (2015).
pubmed: 25800047
doi: 10.1111/jgh.12957
Lv, J. et al. Mechanism of antibacterial activity of Bacillus amyloliquefaciens C-1 lipopeptide toward anaerobic Clostridium difficile. Biomed. Res. Int. 2020, 3104613 (2020).
pubmed: 32190658
pmcid: 7073505
doi: 10.1155/2020/3104613
Martin-Verstraete, I., Peltier, J. & Dupuy, B. The regulatory networks that control Clostridium difficile toxin synthesis. Toxins. 8, 153 (2016).
pmcid: 4885068
doi: 10.3390/toxins8050153
Janoir, C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 37, 13–24 (2016).
pubmed: 26596863
doi: 10.1016/j.anaerobe.2015.10.009
Ripert, G. et al. Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob. Agents Chemother. 60, 3445–3454 (2016).
pubmed: 27001810
pmcid: 4879374
doi: 10.1128/AAC.02815-15
Li, Y. et al. Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets. J. Anim. Sci. Biotechnol. 9, 22 (2018).
pubmed: 29564121
pmcid: 5848560
doi: 10.1186/s40104-018-0236-2
Lombardi, V. R., Etcheverría, I., Carrera, I., Cacabelos, R. & Chacón, A. R. Prevention of chronic experimental colitis induced by dextran sulphate sodium (DSS) in mice treated with FR91. J. Biomed. Biotechnol. 2012, 826178 (2012).
pubmed: 22619498
pmcid: 3348609
doi: 10.1155/2012/826178
Rea, M. C. et al. Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J. Clin. Microbiol. 50, 867–875 (2012).
pubmed: 22162545
pmcid: 3295116
doi: 10.1128/JCM.05176-11
Harris, L. J. et al. Antimicrobial activity of lactic acid bacteria against listeria monocytogenes. J. Food. Prot. 52, 384–387 (1989).
pubmed: 31003307
doi: 10.4315/0362-028X-52.6.384
Jarocki, P. et al. Comparison of various molecular methods for rapid differentiation of intestinal bifidobacteria at the species, subspecies and strain level. BMC. Microbiol. 16, 159 (2016).
pubmed: 27449060
pmcid: 4957357
doi: 10.1186/s12866-016-0779-3
Frank, J. A. et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470. https://doi.org/10.1128/AEM.02272-07 (2008).
doi: 10.1128/AEM.02272-07
pubmed: 18296538
pmcid: 2293150
Jain, C. et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9(1), 1–8 (2018).
doi: 10.1038/s41467-018-07641-9
Meier-Kolthoff, J. P. & Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Comm. 10, 1–10 (2019).
doi: 10.1038/s41467-019-10210-3