Identification of ADS024, a newly characterized strain of Bacillus velezensis with direct Clostridiodes difficile killing and toxin degradation bio-activities.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
03 06 2022
Historique:
received: 06 10 2021
accepted: 23 05 2022
entrez: 6 6 2022
pubmed: 7 6 2022
medline: 9 6 2022
Statut: epublish

Résumé

Clostridioides difficile infection (CDI) remains a significant health threat worldwide. C. difficile is an opportunistic, toxigenic pathogen that takes advantage of a disrupted gut microbiome to grow and produce signs and symptoms ranging from diarrhea to pseudomembranous colitis. Antibiotics used to treat C. difficile infection are usually broad spectrum and can further disrupt the commensal gut microbiota, leaving patients susceptible to recurrent C. difficile infection. There is a growing need for therapeutic options that can continue to inhibit the outgrowth of C. difficile after antibiotic treatment is completed. Treatments that degrade C. difficile toxins while having minimal collateral impact on gut bacteria are also needed to prevent recurrence. Therapeutic bacteria capable of producing a range of antimicrobial compounds, proteases, and other bioactive metabolites represent a potentially powerful tool for preventing CDI recurrence following resolution of symptoms. Here, we describe the identification and initial characterization of ADS024 (formerly ART24), a novel therapeutic bacterium that can kill C. difficile in vitro with limited impact on other commensal bacteria. In addition to directly killing C. difficile, ADS024 also produces proteases capable of degrading C. difficile toxins, the drivers of symptoms associated with most cases of CDI. ADS024 is in clinical development for the prevention of CDI recurrence as a single-strain live biotherapeutic product, and this initial data set supports further studies aimed at evaluating ADS024 in future human clinical trials.

Identifiants

pubmed: 35662257
doi: 10.1038/s41598-022-13248-4
pii: 10.1038/s41598-022-13248-4
pmc: PMC9166764
doi:

Substances chimiques

Anti-Bacterial Agents 0
Peptide Hydrolases EC 3.4.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9283

Informations de copyright

© 2022. The Author(s).

Références

Ramirez, J. et al. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 10, 572912 (2020).
pubmed: 33330122 pmcid: 7732679 doi: 10.3389/fcimb.2020.572912
Koppel, N. & Balskus, E. P. Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem. Biol. 23, 18–30 (2016).
pubmed: 26933733 doi: 10.1016/j.chembiol.2015.12.008
Martín, R. et al. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb. Cell Fact. 12, 71 (2013).
pubmed: 23876056 pmcid: 3726476 doi: 10.1186/1475-2859-12-71
Donia, M. S. & Fischbach, M. A. Human microbiota: small molecules from the human microbiota. Science 349, 1254766 (2015).
pubmed: 26206939 pmcid: 4641445 doi: 10.1126/science.1254766
Robinson, C. J., Bohannan, B. J. & Young, V. B. From structure to function: the ecology of host-associated microbial communities. Microbiol. Mol. Biol. Rev. 74, 453–476 (2010).
pubmed: 20805407 pmcid: 2937523 doi: 10.1128/MMBR.00014-10
Lee, Y. K. & Mazmanian, S. K. Has the microbiota played a critical role in the evolution of the adaptive immune system?. Science 330, 1768–1773 (2010).
pubmed: 21205662 pmcid: 3159383 doi: 10.1126/science.1195568
Song, J. H. & Kim, Y. S. Recurrent Clostridium difficile infection: risk factors, treatment, and prevention. Gut Liver. 13, 16–24. https://doi.org/10.5009/gnl18071 (2019).
doi: 10.5009/gnl18071 pubmed: 30400734
Kim, D., Zeng, M. Y. & Núñez, G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp. Mol. Med. 49, e339–e339 (2017).
pubmed: 28546562 pmcid: 5454439 doi: 10.1038/emm.2017.24
Guh, A. & Kutty, P. K. Clostridioides difficile infection. Ann. Intern. Med. 169, ITC4–ITC64 (2018).
Zhu, D., Sorg, J. A. & Sun, X. Clostridioides difficile biology: sporulation, germination, and corresponding therapies for C. difficile infection. Front. Cell Infect. Microbiol. 8, 8–29 (2018).
doi: 10.3389/fcimb.2018.00029
Gerding, D. N. et al. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes. 5, 15–27 (2014).
pubmed: 24253566 doi: 10.4161/gmic.26854
Thomas, C., Stevenson, M. & Riley, T. V. Antibiotics and hospital-acquired Clostridium difficile-associated diarrhea: a systematic review. J. Antimicrob. Chemother. 51, 1339–1350 (2003).
pubmed: 12746372 doi: 10.1093/jac/dkg254
Loo, V. G. et al. Host and pathogen factors for Clostridium difficile infection and colonization. N. Engl. J. Med. 365, 1693–1703 (2011).
pubmed: 22047560 doi: 10.1056/NEJMoa1012413
Britton, R. A. & Young, V. B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 146, 1547–1553 (2014).
pubmed: 24503131 doi: 10.1053/j.gastro.2014.01.059
Awad, M. M. et al. D. Clostridium difficile virulence factors: insights into an anaerobic spore-forming pathogen. Gut Microbes. 5, 579–593 (2014).
pubmed: 25483328 pmcid: 4615314 doi: 10.4161/19490976.2014.969632
Johnson, S. et al. Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. N. Engl. J. Med. 341, 1645–1651 (1999).
pubmed: 10572152 doi: 10.1056/NEJM199911253412203
McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, e1–e48 (2018).
pubmed: 29462280 pmcid: 6018983 doi: 10.1093/cid/cix1085
Kelly, C. P. Can we identify patients at high risk of recurrent Clostridium difficile infection?. Clin. Microbiol. Infect. 18(Suppl. 6), 21–27 (2012).
pubmed: 23121551 doi: 10.1111/1469-0691.12046
Johnson, S. et al. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin Infect Dis. 73, e1029–e1044 (2021).
pubmed: 34164674 doi: 10.1093/cid/ciab549
Ramsay, I., Brown, N. M. & Enoch, D. A. Recent progress for the effective prevention and treatment of recurrent Clostridium difficile infection. Infect. Dis. Res. Treat. 11, 1178633718758023 (2018).
Peng, Z. et al. Advances in the diagnosis and treatment of Clostridium difficile infections. Emerg. Microbes Infect. 7, 1–13 (2018).
doi: 10.1038/s41426-017-0019-4
Kociolek, L. K. & Gerding, D. N. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat. Rev. Gastroenterol. Hepatol. 13, 150–160 (2016).
pubmed: 26860266 doi: 10.1038/nrgastro.2015.220
DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).
pubmed: 31665575 doi: 10.1056/NEJMoa1910437
Khanna, S. et al. RBX7455, a non-frozen, orally administered investigational live biotherapeutic, is safe, effective, and shifts patients’ microbiomes in a phase 1 study for recurrent Clostridioides difficile infections. Clin. Infect. Dis. 73, e1613–e1620 (2021).
pubmed: 32966574 doi: 10.1093/cid/ciaa1430
Khanna, S. Microbiota restoration for recurrent Clostridioides difficile: Getting one step closer every day!. J. Intern. Med. 290, 294–309 (2021).
pubmed: 33856727 doi: 10.1111/joim.13290
Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).
pubmed: 35045228 doi: 10.1056/NEJMoa2106516
Tamang, J. P., Watanabe, K. & Holzapfel, W. H. Review: diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 7, 377 (2016).
pubmed: 27047484 pmcid: 4805592 doi: 10.3389/fmicb.2016.00377
Jernberg, C., Löfmark, S., Edlund, C. & Jansson, JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007). [published correction appears in ISME J. 7, 456 (2013)].
Fan, B., Blom, J., Klenk, H. P. & Borriss, R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex. Front. Microbiol. 8, 22 (2017).
pubmed: 28163698 pmcid: 5247444 doi: 10.3389/fmicb.2017.00022
Chen, X. H. et al. Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014 (2007).
pubmed: 17704766 doi: 10.1038/nbt1325
Huy, D. N. A., Hao, P. A. & Hung, P. V. Screening and identification of Bacillus sp. isolated from traditional Vietnamese soybean-fermented products for high fibrinolytic enzyme production. Int. Food Res. J. (Malaysia). 23, 326–331 (2016).
Cho, S. J., Oh, S. H., Pridmore, R. D., Juillerat, M. A. & Lee, C. H. Purification and characterization of proteases from Bacillus amyloliquefaciens isolated from traditional soybean fermentation starter. J. Agric. Food Chem. 51, 7664–7670 (2003).
pubmed: 14664526 doi: 10.1021/jf0259314
Chun, B. H., Kim, K. H., Jeong, S. E. & Jeon, C. O. Genomic and metabolic features of the Bacillus amyloliquefaciens group—B. amyloliquefaciens, B. velezensis, and B. siamensis—revealed by pan-genome analysis. Food Microbiol. 77, 146–157 (2019).
pubmed: 30297045 doi: 10.1016/j.fm.2018.09.001
Geeraerts, S., Ducatelle, R., Haesebrouck, F. & Immerseel, F. V. Bacillus amyloliquefaciens as prophylactic treatment for Clostridium difficile-associated disease in a mouse model. J. Gastroenterol. Hepatol. 30, 1275–1280 (2015).
pubmed: 25800047 doi: 10.1111/jgh.12957
Lv, J. et al. Mechanism of antibacterial activity of Bacillus amyloliquefaciens C-1 lipopeptide toward anaerobic Clostridium difficile. Biomed. Res. Int. 2020, 3104613 (2020).
pubmed: 32190658 pmcid: 7073505 doi: 10.1155/2020/3104613
Martin-Verstraete, I., Peltier, J. & Dupuy, B. The regulatory networks that control Clostridium difficile toxin synthesis. Toxins. 8, 153 (2016).
pmcid: 4885068 doi: 10.3390/toxins8050153
Janoir, C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 37, 13–24 (2016).
pubmed: 26596863 doi: 10.1016/j.anaerobe.2015.10.009
Ripert, G. et al. Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob. Agents Chemother. 60, 3445–3454 (2016).
pubmed: 27001810 pmcid: 4879374 doi: 10.1128/AAC.02815-15
Li, Y. et al. Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets. J. Anim. Sci. Biotechnol. 9, 22 (2018).
pubmed: 29564121 pmcid: 5848560 doi: 10.1186/s40104-018-0236-2
Lombardi, V. R., Etcheverría, I., Carrera, I., Cacabelos, R. & Chacón, A. R. Prevention of chronic experimental colitis induced by dextran sulphate sodium (DSS) in mice treated with FR91. J. Biomed. Biotechnol. 2012, 826178 (2012).
pubmed: 22619498 pmcid: 3348609 doi: 10.1155/2012/826178
Rea, M. C. et al. Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J. Clin. Microbiol. 50, 867–875 (2012).
pubmed: 22162545 pmcid: 3295116 doi: 10.1128/JCM.05176-11
Harris, L. J. et al. Antimicrobial activity of lactic acid bacteria against listeria monocytogenes. J. Food. Prot. 52, 384–387 (1989).
pubmed: 31003307 doi: 10.4315/0362-028X-52.6.384
Jarocki, P. et al. Comparison of various molecular methods for rapid differentiation of intestinal bifidobacteria at the species, subspecies and strain level. BMC. Microbiol. 16, 159 (2016).
pubmed: 27449060 pmcid: 4957357 doi: 10.1186/s12866-016-0779-3
Frank, J. A. et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470. https://doi.org/10.1128/AEM.02272-07 (2008).
doi: 10.1128/AEM.02272-07 pubmed: 18296538 pmcid: 2293150
Jain, C. et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9(1), 1–8 (2018).
doi: 10.1038/s41467-018-07641-9
Meier-Kolthoff, J. P. & Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Comm. 10, 1–10 (2019).
doi: 10.1038/s41467-019-10210-3

Auteurs

Michelle M O'Donnell (MM)

APC Microbiome Ireland, University College Cork, Cork, Ireland.

James W Hegarty (JW)

Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.

Brian Healy (B)

APC Microbiome Ireland, University College Cork, Cork, Ireland.

Sarah Schulz (S)

APC Microbiome Ireland, University College Cork, Cork, Ireland.

Calum J Walsh (CJ)

APC Microbiome Ireland, University College Cork, Cork, Ireland.
Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.

Colin Hill (C)

APC Microbiome Ireland, University College Cork, Cork, Ireland.

R Paul Ross (RP)

APC Microbiome Ireland, University College Cork, Cork, Ireland.

Mary C Rea (MC)

Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.

Ronald Farquhar (R)

Adiso Therapeutics, Inc., Concord, MA, USA.

Laurent Chesnel (L)

Adiso Therapeutics, Inc., Concord, MA, USA. lchesnel@adisotx.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH