The potential of multispectral imaging flow cytometry for environmental monitoring.
environmental monitoring
imaging flow cytometry
plant traits
Journal
Cytometry. Part A : the journal of the International Society for Analytical Cytology
ISSN: 1552-4930
Titre abrégé: Cytometry A
Pays: United States
ID NLM: 101235694
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
23
04
2022
received:
31
10
2021
accepted:
12
05
2022
pubmed:
8
6
2022
medline:
9
9
2022
entrez:
7
6
2022
Statut:
ppublish
Résumé
Environmental monitoring involves the quantification of microscopic cells and particles such as algae, plant cells, pollen, or fungal spores. Traditional methods using conventional microscopy require expert knowledge, are time-intensive and not well-suited for automated high throughput. Multispectral imaging flow cytometry (MIFC) allows measurement of up to 5000 particles per second from a fluid suspension and can simultaneously capture up to 12 images of every single particle for brightfield and different spectral ranges, with up to 60x magnification. The high throughput of MIFC has high potential for increasing the amount and accuracy of environmental monitoring, such as for plant-pollinator interactions, fossil samples, air, water or food quality that currently rely on manual microscopic methods. Automated recognition of particles and cells is also possible, when MIFC is combined with deep-learning computational techniques. Furthermore, various fluorescence dyes can be used to stain specific parts of the cell to highlight physiological and chemical features including: vitality of pollen or algae, allergen content of individual pollen, surface chemical composition (carbohydrate coating) of cells, DNA- or enzyme-activity staining. Here, we outline the great potential for MIFC in environmental research for a variety of research fields and focal organisms. In addition, we provide best practice recommendations.
Identifiants
pubmed: 35670307
doi: 10.1002/cyto.a.24658
doi:
Substances chimiques
Allergens
0
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
782-799Informations de copyright
© 2022 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
Références
Bell KL, Burgess KS, Botsch JC, Dobbs EK, Read TD, Brosi BJ. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. Mol Ecol. 2019;28(2):431-55. https://doi.org/10.1111/mec.14840
Groendahl S, Kahlert M, Fink P. The best of both worlds: A combined approach for analyzing microalgal diversity via metabarcoding and morphology-based methods. PLoS One. 2017;12(2):e0172808. https://doi.org/10.1371/journal.pone.0172808
Barteneva NS, Fasler-Kan E, Vorobjev IA. Imaging flow cytometry: coping with heterogeneity in biological systems. J Histochem Cytochem. 2012;60(10):723-33. https://doi.org/10.1369/0022155412453052
Dashkova V, Malashenkov D, Poulton N, Vorobjev I, Barteneva NS. Imaging flow cytometry for phytoplankton analysis. Methods. 2017;112:188-200. https://doi.org/10.1016/j.ymeth.2016.05.007
Poulton, Nicole J. (2016): FlowCam: quantification and classification of phytoplankton by imaging flow cytometry. In Natasha S. Barteneva, Ivan A. Vorobjev, editors. Imaging flow cytometry. Methods and protocols. 1st ed. New York, NY: Humana Press (SpringerLink Bücher); 2016. pp. 237-247. https://doi.org/10.1007/978-1-4939-3302-0_17.
Poulton NJ. Imaging flow cytometry for phytoplankton analysis: instrumentation and applications. J Biomol Techn. 2019;30:S52.
Dunker S. Hidden secrets behind dots: improved phytoplankton taxonomic resolution using high-throughput imaging flow cytometry. Cytometry A. 2019;95(8):854-68. https://doi.org/10.1002/cyto.a.23870
Dunker S, Boho D, Wäldchen J, Mäder P. Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton. BMC Ecol. 2018;18(1):1-15. https://doi.org/10.1186/s12898-018-0209-5
Dunker S, Motivans E, Rakosy D, Boho D, Mäder P, Hornick T, et al. Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytol. 2021;229(1):593-606. https://doi.org/10.1111/nph.16882
Kleiber A, Kraus D, Henkel T, Fritzsche W. Review: tomographic imaging flow cytometry. Lab Chip. 2021;21(19):3655-66. https://doi.org/10.1039/D1LC00533B
Sosik HM, Olson RJ. Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol Oceanogr Methods. 2007;5(6):204-16. https://doi.org/10.4319/lom.2007.5.204
Fragoso GM, Poulton AJ, Pratt NJ, Johnsen G, Purdie DA. Trait-based analysis of subpolar North Atlantic phytoplankton and plastidic ciliate communities using automated flow cytometer. Limnol Oceanogr. 2019;64(4):1763-78. https://doi.org/10.1002/lno.11189
Sieracki CK, Sieracki ME, Yentsch CS. An imaging-in-flow system for automated analysis of marine microplankton. Mar Ecol Prog Ser. 1998;168:285-96. Available from: http://www.jstor.org/stable/24828385
Rožanc J, Finšgar M, Maver U. Progressive use of multispectral imaging flow cytometry in various research areas. Analyst. 2021;146(16):4985-5007. https://doi.org/10.1039/D1AN00788B
Goda K, Ayazi A, Gossett DR, Sadasivam J, Lonappan CK, Sollier E, et al. High-throughput single-microparticle imaging flow analyzer. Proc Natl Acad Sci U S A. 2012;109(29):11630-5. https://doi.org/10.1073/pnas.1204718109
Aloisi, Iris; Cai, Giampiero; Tumiatti, Vincenzo; Minarini, Anna; Del Duca, Stefano (2015): Natural polyamines and synthetic analogs modify the growth and the morphology of Pyrus communis pollen tubes affecting ROS levels and causing cell death. Plant Sci 239, pp. 92-105. DOI: https://doi.org/10.1016/j.plantsci.2015.07.008.
Marie D, Rigaut-Jalabert F, Vaulot D. An improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples. Cytometry A. 2014;85(11):962-8. https://doi.org/10.1002/cyto.a.22517
Brussaard CPD, Marie D, Thyrhaug R, Bratbak G. Flow cytometric analysis of phytoplankton viability following viral infection. Aquat Microb Ecol. 2001;26(2):157-66. https://doi.org/10.3354/ame026157
Loureiro J, Doležel J, Greilhuber J, Santos C, Suda J. Plant flow cytometry-far beyond the stone age 73 (A). 2008:579-580. https://doi.org/10.1002/cyto.a.20578.
Bastl K, Berger M, Bergmann K-C, Kmenta M, Berger U. The medical and scientific responsibility of pollen information services. Wien Klin Wochenschr. 2017;129(1-2):70-4. https://doi.org/10.1007/s00508-016-1097-3
Marselle MR, Stadler J, Korn H, Irvine KN, Bonn A. In: Marselle MR, Stadler J, Korn H, Irvine KN, editors. Biodiversity and health in the face of climate change. Aletta Bonn. Cham: Springer International Publishing; 2019 Available from: https://library.oapen.org/handle/20.500.12657/22910
Kleiber A, Ramoji A, Mayer G, Neugebauer U, Popp J, Henkel T. 3-Step flow focusing enables multidirectional imaging of bioparticles for imaging flow cytometry. Lab Chip. 2020;20(9):1676-86. https://doi.org/10.1039/D0LC00244E
Olsson O, Karlsson M, Persson AS, Smith HG, Varadarajan V, Yourstone J, et al. Efficient, automated and robust pollen analysis using deep learning. Methods Ecol Evol. 2021;12(5):850-62. https://doi.org/10.1111/2041-210X.13575
Oteros J, Pusch G, Weichenmeier I, Heimann U, Möller R, Röseler S, et al. Automatic and online pollen monitoring. IAA. 2015;167(3):158-66. https://doi.org/10.1159/000436968
Buters J, Prank M, Sofiev M, Pusch G, Albertini R, Annesi-Maesano I, et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. J Allergy Clin Immunol. 2015;136(1):87-95.e6. https://doi.org/10.1016/j.jaci.2015.01.049
Buters JTM, Kasche A, Weichenmeier I, Schober W, Klaus S, Traidl-Hoffmann C, et al. Year-to-year variation in release of bet v 1 allergen from birch pollen: evidence for geographical differences between west and South Germany. IAA. 2008;145(2):122-30. https://doi.org/10.1159/000108137
Buters JTM, Thibaudon M, Smith M, Kennedy R, Rantio-Lehtimäki A, Albertini R, et al. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmos Environ. 2012;55:496-505. https://doi.org/10.1016/j.atmosenv.2012.01.054
Headland SE, Jones HR, D'Sa ASV, Perretti M, Norling LV. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci Rep. 2014;4(1):5237. https://doi.org/10.1038/srep05237
Kanji ZA, Ladino LA, Wex H, Boose Y, Burkert-Kohn M, Cziczo DJ, et al. Overview of ice nucleating particles. Meteorol Monogr. 2017;58(1):1.1-1.33. https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1
Huang S, Hu W, Chen J, Wu Z, Zhang D, Fu P. Overview of biological ice nucleating particles in the atmosphere. Environ Int. 2021;146:106197. https://doi.org/10.1016/j.envint.2020.106197
Vergara-Temprado J, Miltenberger AK, Furtado K, Grosvenor DP, Shipway BJ, Hill AA, et al. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc Natl Acad Sci U S A. 2018;115(11):2687-92. https://doi.org/10.1073/pnas.1721627115
Rogers DC, DeMott PJ, Kreidenweis SM, Chen Y. A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J Atmos Ocean Technol. 2001;18(5):725-41. https://doi.org/10.1175/1520-0426(2001)018<0725:ACFDCF>2.0.CO;2
Conen F, Henne S, Morris CE, Alewell C. Atmospheric ice nucleators active ≥ −12 °C can be quantified on PM10 filters. Atmos Meas Tech. 2012;5(2):321-7. https://doi.org/10.5194/amt-5-321-2012
Tobo Y, DeMott PJ, Hill TCJ, Prenni AJ, Swoboda-Colberg NG, Franc GD, et al. Organic matter matters for ice nuclei of agricultural soil origin. Atmos Chem Phys. 2014;14(16):8521-31. https://doi.org/10.5194/acp-14-8521-2014
Işıl Ç, de Haan K, Göröcs Z, Koydemir HC, Peterman S, Baum D, et al. Phenotypic analysis of microalgae populations using label-free imaging flow cytometry and deep learning. ACS Photonics. 2021;8(4):1232-42. https://doi.org/10.1021/acsphotonics.1c00220
Petruk V, Kvaternyuk S, Yasynska V, Kozachuk A, Kotyra A, Romaniuk RS, Askarova N. The method of multispectral image processing of phytoplankton processing for environmental control of water pollution. In. Optical Fibers and Their Applications 2015: International Society for Optics and Photonics (9816), 98161N. 2015. https://doi.org/10.1117/12.2229202.short.
Dunker S. Imaging flow cytometry for phylogenetic and morphologicallybased functional group clustering of a natural phytoplankton community over 1 year in an Urban pond. Cytometry A. 2020;97(7):727-36. https://doi.org/10.1002/cyto.a.24044
Toepel J, Wilhelm C, Meister A, Becker A, Del Martinez-Ballesta MC. Cytometry of freshwater phytoplankton. Methods in cell biology: cytometry. Volume 75. 4th ed. San Diego, CA: Academic Press; 2004. pp. 375-407. Available from: https://www.sciencedirect.com/science/article/pii/S0091679X04750153
Stauber JL, Franklin NM, Adams MS. Applications of flow cytometry to ecotoxicity testing using microalgae. Trends Biotechnol. 2002;20(4):141-3. https://doi.org/10.1016/S0167-7799(01)01924-2
Adler NE, Schmitt-Jansen M, Altenburger R. Flow cytometry as a tool to study phytotoxic modes of action. Environ Toxicol Chem. 2007;26(2):297-306. https://doi.org/10.1897/06-1636R.1
Eigemann F, Hilt S, Schmitt-Jansen M. Flow cytometry as a diagnostic tool for the effects of polyphenolic allelochemicals on phytoplankton. Aquat Bot. 2013;104:5-14. https://doi.org/10.1016/j.aquabot.2012.10.005
Gawel A, Seiwert B, Sühnholz S, Schmitt-Jansen M, Mackenzie K. In-situ treatment of herbicide-contaminated groundwater-feasibility study for the cases atrazine and bromacil using two novel nanoremediation-type materials. J Hazard Mater. 2020;393:122470. https://doi.org/10.1016/j.jhazmat.2020.122470
Bicudo de Almeida-Muradian L, Monika Barth O, Dietemann V, Eyer M, Da Freitas AS d, Martel A-C, et al. Standard methods for Apis mellifera honey research. J Apic Res. 2020;59(3):1-62. https://doi.org/10.1080/00218839.2020.1738135
Corvucci F, Nobili L, Melucci D, Grillenzoni F-V. The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem. 2015;169:297-304. https://doi.org/10.1016/j.foodchem.2014.07.122
von der Ohe W, Oddo P, Piana ML, Morlot M, Martin P. Harmonized methods of melissopalynology. Apidologie. 2004;35(suppl 1):S18-25. https://doi.org/10.1051/apido:2004050
Al Naggar Y, Brinkmann M, Sayes CM, AL-Kahtani SN, Dar SA, El-Seedi HR, et al. Are honey bees at risk from microplastics? Toxics. 2021;9(5):109. https://doi.org/10.3390/toxics9050109
Mutinelli F. The spread of pathogens through trade in honey bees and their products (including queen bees and semen): overview and recent developments. Revue scientifique et technique (International Office of Epizootics). 2011;30(1):257-71. https://doi.org/10.20506/rst.30.1.2033
Matyjaszczyk E. Products containing microorganisms as a tool in integrated pest management and the rules of their market placement in the European Union. Pest Manag Sci. 2015;71(9):1201-6. https://doi.org/10.1002/ps.3986
Biskaborn BK, Herzschuh U, Bolshiyanov D, Savelieva L, Zibulski R, Diekmann B. Late Holocene thermokarst variability inferred from diatoms in a lake sediment record from the Lena Delta, Siberian Arctic. J Paleolimnol. 2013;49(2):155-70. https://doi.org/10.1007/s10933-012-9650-1
Pestryakova LA, Herzschuh U, Gorodnichev R, Wetterich S. The sensitivity of diatom taxa from Yakutian lakes (North-Eastern Siberia) to electrical conductivity and other environmental variables. Polar Res. 2018;37(1):1485625. https://doi.org/10.1080/17518369.2018.1485625
Pestryakova LA, Herzschuh U, Wetterich S, Ulrich M. Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern Siberia) inferred from diatom records. Quat Sci Rev. 2012;51:56-70. https://doi.org/10.1016/j.quascirev.2012.06.020
Biskaborn BK, Herzschuh U, Bolshiyanov D, Savelieva L, Diekmann B. Environmental variability in northeastern Siberia during the last ~ 13,300 yr inferred from lake diatoms and sediment-geochemical parameters. Palaeogeogr Palaeoclimatol Palaeoecol. 2012;329-330:22-36. https://doi.org/10.1016/j.palaeo.2012.02.003
Hoff U, Rasmussen TL, Meyer H, Koç N, Hansen J. Palaeoceanographic reconstruction of surface-ocean changes in the southern Norwegian Sea for the last ~130,000 years based on diatoms and with comparison to foraminiferal records. Palaeogeogr Palaeoclimatol Palaeoecol. 2019;524:150-65. https://doi.org/10.1016/j.palaeo.2019.03.006
Cumming BF, Laird KR, Gregory-Eaves I, Simpson KG, Sokal MA, Nordin RN, et al. Tracking past changes in lake-water phosphorus with a 251-lake calibration dataset in British Columbia: tool development and application in a multiproxy assessment of eutrophication and recovery in Osoyoos Lake, a transboundary lake in Western North America. Front Ecol Evol. 2015;3:84. https://doi.org/10.3389/fevo.2015.00084
Luoto TP, Nevalainen L, Kauppila T, Tammelin M, Sarmaja-Korjonen K. Diatom-inferred total phosphorus from dystrophic Lake Arapisto, Finland, in relation to Holocene paleoclimate. Quat Res. 2012;78(2):248-55. https://doi.org/10.1016/j.yqres.2012.05.009
Sochuliaková L, Sienkiewicz E, Hamerlík L, Svitok M, Fidlerová D, Bitušík P. Reconstructing the trophic history of an alpine Lake (high Tatra Mts.) using subfossil diatoms: disentangling the effects of climate and human influence. Water Air Soil Pollut. 2018;229(9):289. https://doi.org/10.1007/s11270-018-3940-9
Stoof-Leichsenring KR, Bernhardt N, Pestryakova LA, Epp LS, Herzschuh U, Tiedemann R. A combined paleolimnological/genetic analysis of diatoms reveals divergent evolutionary lineages of Staurosira and Staurosirella (Bacillariophyta) in Siberian lake sediments along a latitudinal transect. J Paleolimnol. 2014;52(1-2):77-93. https://doi.org/10.1007/s10933-014-9779-1
Siver PA. Potential use of chrysophyte cyst morphometrics as a tool for reconstructing ancient lake environments. Nova Suppl. 2019;148:101-12. https://doi.org/10.1127/nova-suppl/2019/115
Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120(3):321-6. https://doi.org/10.1111/j.1600-0706.2010.18644.x
Alarcãn R. Congruence between visitation and pollen-transport networks in a California plant-pollinator community. Oikos. 2010;119(1):35-44. https://doi.org/10.1111/j.1600-0706.2009.17694.x
Bosch J, González AM, Rodrigo A, Navarro D. Plant-pollinator networks: adding the pollinator's perspective. Ecol Lett. 2009;12(5):409-19. https://doi.org/10.1111/j.1461-0248.2009.01296.x
de Manincor N, Hautekèete N, Mazoyer C, Moreau P, Piquot Y, Schatz B, et al. How biased is our perception of plant-pollinator networks? A comparison of visit- and pollen-based representations of the same networks. Acta Oecol. 2020;105:103551. https://doi.org/10.1016/j.actao.2020.103551
Patiny S. Evolution of plant-pollinator relationships. Cambridge, UK: Cambridge University Press; 2011.
Pornon A, Andalo C, Burrus M, Escaravage N. DNA metabarcoding data unveils invisible pollination networks. Sci Rep. 2017;7(1):16828. https://doi.org/10.1038/s41598-017-16785-5
Kron P, Husband BC. Using flow cytometry to estimate pollen DNA content: improved methodology and applications. Ann Bot. 2012;110(5):1067-78. https://doi.org/10.1093/aob/mcs167
Tennant RK, Jones RT, Brock F, Cook C, Turney CSM, Love J, et al. A new flow cytometry method enabling rapid purification of fossil pollen from terrestrial sediments for AMS radiocarbon dating. J Quat Sci. 2013;28(3):229-36. https://doi.org/10.1002/jqs.2606
Hicks DM, Ouvrard P, Baldock KCR, Baude M, Goddard MA, Kunin WE, et al. Food for pollinators: quantifying the nectar and pollen resources of Urban flower meadows. PLoS One. 2016;11(6):e0158117. https://doi.org/10.1371/journal.pone.0158117
Hunt ME, Floyd GL, Stout BB. Soil algae in field and forest environments. Ecology. 1979;60(2):362-75. https://doi.org/10.2307/1937665
Lentendu G, Hübschmann T, Müller S, Dunker S, Buscot F, Wilhelm C. Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level. J Microbiol Methods. 2013;95(3):463-9. https://doi.org/10.1016/j.mimet.2013.05.006
Huang J. Application of Agaricus bisporus industrial wastewater to produce the biomass of Pichia burtonii. Water Sci Technol. 2019;79(12):2271-8. https://doi.org/10.2166/wst.2019.228
Sastre R, Posten C. Optimization of photosynthesis by reactor design. In: Hallmann A, Rampelotto PH, editors. Photosynthesis biotechnological applications with microalgae. Cham, Switzerland: De Gruyter STEM; 2021. https://doi.org/10.1515/9783110716979-007
Brawley J, George T, Hall B, Jorgenson R, Frost K, Perry D et al. Fluorescent in situ hybridization in suspension analysis using ImageStream multispectral imaging flow cytometry. 2008. Available from: http://dp.univr.it/~laudanna/systems%20biology/technologies/imagestream/posters/fish%20analysis%20using%20imagestream.pdf.
Rose MM, Scheer D, Hou Y, Hotter VS, Komor AJ, Aiyar P, et al. The bacterium Pseudomonas protegens antagonizes the microalga Chlamydomonas reinhardtii using a blend of toxins. Environ Microbiol. 2021;23(9):5525-40. https://doi.org/10.1111/1462-2920.15700
Cerveira J, Begum J, Barros DM, van der Veen AG, Filby A. An imaging flow cytometry-based approach to measuring the spatiotemporal calcium mobilisation in activated T cells. J Immunol Methods. 2015;423:120-30. https://doi.org/10.1016/j.jim.2015.04.030
Watson DA, Brown LO, Gaskill DF, Naivar M, Graves SW, Doorn SK, et al. A flow cytometer for the measurement of Raman spectra. Cytometry A. 2008;73(2):119-28. https://doi.org/10.1002/cyto.a.20520
Bedolla DE, Kenig S, Mitri E, Storici P, Vaccari L. Further insights into the assessment of cell cycle phases by FTIR microspectroscopy. Vib Spectrosc. 2014;75:127-35. https://doi.org/10.1016/j.vibspec.2014.08.007
Reimann R, Zeng B, Jakopec M, Burdukiewicz M, Petrick I, Schierack P, et al. Classification of dead and living microalgae Chlorella vulgaris by bioimage informatics and machine learning. Algal Res. 2020;48:101908. https://doi.org/10.1016/j.algal.2020.101908
Signori L, Ami D, Posteri R, Giuzzi A, Mereghetti P, Porro D, et al. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts. Microb Cell Factories. 2016;15(1):75. https://doi.org/10.1186/s12934-016-0467-x
Fanesi A, Wagner H, Wilhelm C. Phytoplankton growth rate modelling: can spectroscopic cell chemotyping be superior to physiological predictors? Proc Biol Sci. 2017;284:20161956. https://doi.org/10.1098/rspb.2016.1956
Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJGM, Yin N, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustain. 2020;3(11):929-37. https://doi.org/10.1038/s41893-020-0567-9
Long M, Paul-Pont I, Hégaret H, Moriceau B, Lambert C, Huvet A, et al. Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environ Pollut. 2017;228:454-63. https://doi.org/10.1016/j.envpol.2017.05.047
Renner KO, Foster HA, Routledge EJ, Scrimshaw MD. A comparison of different approaches for characterizing microplastics in selected personal care products. Environ Toxicol Chem. 2021;41:880-7. https://doi.org/10.1002/etc.5057
Anger PM, Esch E v d, Baumann T, Elsner M, Niessner R, Ivleva NP. Raman microspectroscopy as a tool for microplastic particle analysis. TrAC Trends Anal Chem. 2018;109:214-26. https://doi.org/10.1016/j.trac.2018.10.010
Primpke S, Fischer M, Lorenz C, Gerdts G, Scholz-Böttcher BM. Comparison of pyrolysis gas chromatography/mass spectrometry and hyperspectral FTIR imaging spectroscopy for the analysis of microplastics. Anal Bioanal Chem. 2020;412(30):8283-98. https://doi.org/10.1007/s00216-020-02979-w
Park Y, Abihssira-García IS, Thalmann S, Wiegertjes GF, Barreda DR, Olsvik PA, et al. Imaging flow cytometry protocols for examining phagocytosis of microplastics and bioparticles by immune cells of aquatic animals. Front Immunol. 2020;11:203. https://doi.org/10.3389/fimmu.2020.00203
Kaile N, Lindivat M, Elio J, Thuestad G, Crowley QG, Hoell IA. Preliminary results from detection of microplastics in liquid samples using flow cytometry. Front Mar Sci. 2020;7:856. https://doi.org/10.3389/fmars.2020.552688
Sgier L, Freimann R, Zupanic A, Kroll A. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics. Nat Commun. 2016;7(1):11587. https://doi.org/10.1038/ncomms11587
Hofmann P, Chatzinotas A, Harpole W, Dunker S. Temperature and stoichiometric dependence of phytoplankton traits. Ecology. 2019;100(12):e02875. https://doi.org/10.1002/ecy.2875
Dunker S, Jakob T, Wilhelm C. Contrasting effects of the cyanobacterium Microcystis aeruginosa on the growth and physiology of two green algae, Oocystis marsonii and Scenedesmus obliquus, revealed by flow cytometry. Freshw Biol. 2013;58(8):1573-87. https://doi.org/10.1111/fwb.12143
Virtanen R, Eskelinen A, Harrison S. Comparing the responses of bryophytes and short-statured vascular plants to climate shifts and eutrophication. Funct Ecol. 2017;31(4):946-54. https://doi.org/10.1111/1365-2435.12788
Mallen-Cooper M, Cornwell WK. A systematic review of transplant experiments in lichens and bryophytes. Bryologist. 2020;123(3):444-54. https://doi.org/10.1639/0007-2745-123.3.443
Ostendorf AK, van Gessel N, Malkowsky Y, Sabovljevic MS, Rensing SA, Roth-Nebelsick A, et al. Polyploidization within the Funariaceae-a key principle behind speciation, sporophyte reduction and the high variance of spore diameters? BDE. 2021;43(1):164-79. https://doi.org/10.11646/bde.43.1.13
Reski R, Faust M, Wang XH, Wehe M, Abel WO. Genome analysis of the moss Physcomitrella patens (Hedw.) B.S.G. Mol Gen Genet. 1994;244(4):352-9. https://doi.org/10.1007/BF00286686
Bainard JD, Newmaster SG, Budke JM. Genome size and endopolyploidy evolution across the moss phylogeny. Ann Bot. 2020;125(4):543-55. https://doi.org/10.1093/aob/mcz194
Goga M, Ručová D, Kolarčik V, Sabovljević M, Bačkor M, Lang I. Usnic acid, as a biotic factor, changes the ploidy level in mosses. Ecol Evol. 2018;8(5):2781-7. https://doi.org/10.1002/ece3.3908
Catala M, Esteban M, Rodríguez-Gil J-L, Quintanilla LG. Development of a naturally miniaturised testing method based on the mitochondrial activity of fern spores: a new higher plant bioassay. Chemosphere. 2009;77(7):983-8. https://doi.org/10.1016/j.chemosphere.2009.07.080
Feito R, Valcárcel Y, Catalá M. Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study. Ecotoxicology. 2012;21(1):289-96. https://doi.org/10.1007/s10646-011-0790-2
Dashkova V, Segev E, Malashenkov D, Kolter R, Vorobjev I, Barteneva NS. Microalgal cytometric analysis in the presence of endogenous autofluorescent pigments. Algal Res. 2016;19:370-80. https://doi.org/10.1016/j.algal.2016.05.013
Wendel JF. The wondrous cycles of polyploidy in plants. Am J Bot. 2015;102(11):1753-6. https://doi.org/10.3732/ajb.1500320
Paule J, Gregor T, Schmidt M, Gerstner E-M, Dersch G, Dressler S, et al. Chromosome numbers of the flora of Germany-a new online database of georeferenced chromosome counts and flow cytometric ploidy estimates. Plant Syst Evol. 2017;303(8):1123-9. https://doi.org/10.1007/s00606-016-1362-y
Durka W, Michalski SG, Berendzen KW, Bossdorf O, Bucharova A, Hermann J-M, et al. Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. J Appl Ecol. 2017;54(1):116-26. https://doi.org/10.1111/1365-2664.12636
Dolezel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2(9):2233-44. https://doi.org/10.1038/nprot.2007.310
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science (New York, NY). 1983;220(4601):1049-51. https://doi.org/10.1126/science.220.4601.1049
Satori CP, Kostal V, Arriaga EA. Review on recent advances in the analysis of isolated organelles. Anal Chim Acta. 2012;753:8-18. https://doi.org/10.1016/j.aca.2012.09.041
Schober AF, Bártulos R, Bischoff A, Lepetit B, Gruber A, Kroth PG. Organelle studies and proteome analyses of mitochondria and plastids fractions from the diatom Thalassiosira pseudonana. Plant Cell Physiol. 2019;60(8):1811-28. https://doi.org/10.1093/pcp/pcz097
Pfündel E, Meister A. Flow cytometry of protoplasts from C4 plants. Photosynthesis: mechanisms and effects. Dordrecht: Springer; 1998. p. 4341-4. https://doi.org/10.1007/978-94-011-3953-3_1004
Hanson KE, Bryant PL, Painter AM, Skibo JM. Acorn processing and pottery use in the upper Great Lakes: an experimental comparison of Stone boiling and ceramic technology. Ethnoarchaeology. 2019;11(2):170-85. https://doi.org/10.1080/19442890.2019.1642574
Louderback LA, Pavlik BM. Starch granule evidence for the earliest potato use in North America. Proc Natl Acad Sci U S A. 2017;114(29):7606-10. https://doi.org/10.1073/pnas.1705540114
Albert RK, Kooiman SM, Clark CA, Lovis WA. Earliest MICROBOTANICAL evidence for maize in the northern Lake MICHIGAN basin. Am Antiq. 2018;83(2):345-55. https://doi.org/10.1017/aaq.2018.10
Berman MJ, Pearsall DM. Crop dispersal and Lucayan tool use: investigating the creation of transported landscapes in the Central Bahamas through starch grain, Phytolith, macrobotanical, and artifact studies. J Field Archaeol. 2020;45(5):355-71. https://doi.org/10.1080/00934690.2020.1740958
Boyd M, Surette C, Nicholson BA. Archaeobotanical evidence of prehistoric maize (Zea mays) consumption at the northern edge of the Great Plains. J Archaeol Sci. 2006;33(8):1129-40. https://doi.org/10.1016/j.jas.2005.12.003
Boyd M, Varney T, Surette C, Surette J. Reassessing the northern limit of maize consumption in North America: stable isotope, plant microfossil, and trace element content of carbonized food residue. J Archaeol Sci. 2008;35(9):2545-56. https://doi.org/10.1016/j.jas.2008.04.008
Messner TC. Acorns and bitter roots. Starch grain research in the prehistoric eastern woodlands. Tuscaloosa: University of Alabama Press; 2011.
Langejans GHJ. Remains of the day-preservation of organic micro-residues on stone tools. J Archaeol Sci. 2010;37(5):971-85. https://doi.org/10.1016/j.jas.2009.11.030
Lints A. Early evidence of maize (Zea mays ssp. mays) and beans (Phaseolus vulgaris) on the northern plains: an examination of Avonlea cultural materials (AD 300-1100). Early evidence of maize (Zea mays ssp. mays) and beans (Phaseolus vulgaris) on the northern plains: an examination of Avonlea cultural materials (AD 300-1100). 2013. Available from: http://lurepository.lakeheadu.ca/handle/2453/403.
Zarrillo S, Kooyman B. Evidence for berry and maize processing on the Canadian Plains from starch grain analysis. Am Antiq. 2006;71(3):473-99. https://doi.org/10.1017/S0002731600039779
Brown GH, Louderback LA. Identification of starch granules from oak and grass species in the central coast of California. J Archaeol Sci Rep. 2020;33:102549. https://doi.org/10.1016/j.jasrep.2020.102549
Mercader J, Abtosway M, Bird R, Bundala M, Clarke S, Favreau J, et al. Morphometrics of starch granules from sub-Saharan plants and the taxonomic identification of ancient starch. Front Earth Sci. 2018;6:146. https://doi.org/10.3389/feart.2018.00146
Musaubach MG, Plos A, Del Babot MP. Differentiation of archaeological maize (Zea mays L.) from native wild grasses based on starch grain morphology. Cases from the Central Pampas of Argentina. J Archaeol Sci. 2013;40(2):1186-93. https://doi.org/10.1016/j.jas.2012.09.026
Perry L, Quigg MJ. Starch remains and Stone boiling in the Texas panhandle part II: identifying Wildrye (Elymus spp.). Plains Anthropol. 2011;56(218):109-19. https://doi.org/10.1179/pan.2011.011
Yang X, Perry L. Identification of ancient starch grains from the tribe Triticeae in the North China plain. J Archaeol Sci. 2013;40(8):3170-7. https://doi.org/10.1016/j.jas.2013.04.004
Field JH, Kealhofer L, Cosgrove R, Coster ACF. Human-environment dynamics during the Holocene in the Australian wet tropics of NE Queensland: A starch and phytolith study. J Anthropol Archaeol. 2016;44:216-34. https://doi.org/10.1016/j.jaa.2016.07.007
Holst I, Moreno J, Piperno DR. Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths. Proc Natl Acad Sci U S A. 2007;104(45):17608-13. https://doi.org/10.1073/pnas.0708736104
Torrence R, Wright R, Conway R. Identification of starch granules using image analysis and multivariate techniques. J Archaeol Sci. 2004;31(5):519-32. https://doi.org/10.1016/j.jas.2003.09.014
Kron P, Loureiro J, Castro S, Čertner M. Flow cytometric analysis of pollen and spores: an overview of applications and methodology. Cytometry A. 2021;99(4):348-58. https://doi.org/10.1002/cyto.a.24330
France I, Duller AWG, Duller GAT, Lamb HF. A new approach to automated pollen analysis. Quat Sci Rev. 2000;19(6):537-46. https://doi.org/10.1016/S0277-3791(99)00021-9
Langford M, Taylor GE, Flenley JR. Computerized identification of pollen grains by texture analysis. Rev Palaeobot Palynol. 1990;64(1-4):197-203. https://doi.org/10.1016/0034-6667(90)90133-4
Hornick T, Richter A, Harpole W, Bastl M, Bohlmann S, Bonn A, et al. An integrative environmental pollen diversity assessment and its importance for the sustainable development goals. Plants People Planet. 2021;4:110-21. https://doi.org/10.1002/ppp3.10234
Romero IC, Kong S, Fowlkes CC, Jaramillo C, Urban MA, Oboh-Ikuenobe F, et al. Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy. Proc Natl Acad Sci U S A. 2020;117(45):28496-505. https://doi.org/10.1073/pnas.2007324117
Kasai Y, Leipe C, Saito M, Kitagawa H, Lauterbach S, Brauer A, et al. Breakthrough in purification of fossil pollen for dating of sediments by a new large-particle on-chip sorter. Sci Adv. 2021;7(16):eabe7327. https://doi.org/10.1126/sciadv.abe7327
Bucher S, König P, Menzel A, Migliavacca M, Ewald J, Römermann C. Traits and climate are associated with first flowering day in herbaceous species along elevational gradients. Ecol Evol. 2018;8(2):1147-58. https://doi.org/10.1002/ece3.3720
König P, Tautenhahn S, Cornelissen JH, Kattge J, Bönisch G, Römermann C. Advances in flowering phenology across the northern hemisphere are explained by functional traits. Glob Ecol Biogeogr. 2018;27(3):310-21. https://doi.org/10.1111/geb.12696
Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. Fingerprints of global warming on wild animals and plants. Nature. 2003;421(6918):57-60. https://doi.org/10.1038/nature01333
Bucher S, Römermann C. The timing of leaf senescence relates to flowering phenology and functional traits in 17 herbaceous species along elevational gradients. J Ecol. 2021;109(3):1537-48. https://doi.org/10.1111/1365-2745.13577
Nordt B, Hensen I, Bucher S, Freiberg M, Primack RB, Stevens A-D, et al. The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Funct Ecol. 2021;35(4):821-34. https://doi.org/10.1111/1365-2435.13747
Grossart H-P, van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K. Fungi in aquatic ecosystems. Nat Rev Microbiol. 2019;17(6):339-54. https://doi.org/10.1038/s41579-019-0175-8
Klawonn I, Dunker S, Kagami M, Grossart H-P, van den Wyngaert S. Intercomparison of two fluorescent dyes to visualize parasitic fungi (Chytridiomycota) on phytoplankton. Microb Ecol. 2021;1-15. https://doi.org/10.1007/s00248-021-01893-7
Fang Y, Ramasamy RP. Current and prospective methods for plant disease detection. Biosensors. 2015;5(3):537-61. https://doi.org/10.3390/bios5030537
Johansson JF, Paul LR, Finlay RD. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol. 2004;48(1):1-13. https://doi.org/10.1016/j.femsec.2003.11.012
Prigione V, Lingua G, Marchisio VF. Development and use of flow cytometry for detection of airborne fungi. Appl Environ Microbiol. 2004;70(3):1360-5. https://doi.org/10.1128/AEM.70.3.1360-1365.2004
Liang L, Engling G, Cheng Y, Duan F, Du Z, He K. Rapid detection and quantification of fungal spores in the urban atmosphere by flow cytometry. J Aerosol Sci. 2013;66:179-86. https://doi.org/10.1016/j.jaerosci.2013.08.013
Calvert MEK, Lannigan JA, Pemberton LF. Optimization of yeast cell cycle analysis and morphological characterization by multispectral imaging flow cytometry. Cytometry A. 2008;73A(9):825-33. https://doi.org/10.1002/cyto.a.20609
Staley JT. Bacteria, Their Smallest Representatives and Subcellular Structures, and the Purported Precambrian Fossil “Metallogenium”. In Microorganisms, National Research Council Steering Group for the Workshop on Size Limits of Very Small (Ed.): Size Limits of Very Small Microorganisms: Proceedings of a Workshop: National Academies Press (US). 1999. Available from: https://www.ncbi.nlm.nih.gov/books/NBK224752/.
Li Y, Mahjoubfar A, Chen C, Niazi KR, Pei L, Jalali B. Deep cytometry: deep learning with real-time inference in cell sorting and flow cytometry. Sci Rep. 2019;9(1):11088. https://doi.org/10.1038/s41598-019-47193-6
Lee JA, Spidlen J, Boyce K, Cai J, Crosbie N, Dalphin M, et al. MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A. 2008;73(10):926-30. https://doi.org/10.1002/cyto.a.20623
Spidlen J, Breuer K, Brinkman R. Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) compliant manuscript using the International Society for Advancement of Cytometry (ISAC) FCS file repository (FlowRepository.org). Curr Protocols Cytometry. 2012;10(1):10.18.1-10.18.26. https://doi.org/10.1002/0471142956.cy1018s61
Spidlen J, Novo D. ICEFormat-the image cytometry experiment format. Cytometry A. 2012;81(12):1015-8. https://doi.org/10.1002/cyto.a.22212
Filby A, Davies D. Reporting imaging flow cytometry data for publication: why mask the detail? Cytometry A. 2012;81(8):637-42. https://doi.org/10.1002/cyto.a.22091