Increased Number of Passes and Double Stent Retriever Technique Induces Cumulative Injury on Arterial Wall After Mechanical Thrombectomy in a Swine Model.
Acute ischemic stroke
Mechanical thrombectomy
Stent retriever
Vascular damage
Vessel wall injury
Journal
Translational stroke research
ISSN: 1868-601X
Titre abrégé: Transl Stroke Res
Pays: United States
ID NLM: 101517297
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
22
02
2022
accepted:
30
05
2022
revised:
25
05
2022
medline:
8
5
2023
pubmed:
8
6
2022
entrez:
7
6
2022
Statut:
ppublish
Résumé
The number of stentriever passes during endovascular thrombectomy impacts clinical outcomes in acute ischemic stroke. Previous studies suggest that the simultaneous double stent retriever technique (DSRT) could improve the efficacy and reduce the number of passes. We aim to analyze the degree of vessel wall injury according to the number of passes and technique (single vs. simultaneous devices). Histological changes were evaluated in renal arteries (RAs) of swine models after thrombectomy (1, 2, or 3 passes) with single stent (SSRT) and DSRT. Thrombectomy passes were performed in 12 RA: 3 samples from each artery were studied by optical microscopy to assess a vascular damage score. All thirty-six samples showed endothelial denudation and different degrees of damage in the deepest layers of the arterial wall; however, all arteries remained patent by the time of assessment. In all cases, the degree of vascular injury increased with the number of passes. Compared with a SSRT, DSRT showed a higher severity of histological damage corresponding to the damage caused by 1.4 SSRT passes. However, in distal arteries, vascular damage was relatively similar when comparing SSRT with multiple passes and DSRT with one pass. The degree of vessel injury increases with the number of passes. Even though histological damage per pass was 1.4 higher with DSRT than SSRT, short-term vessel patency was not compromised after up to 3 DSRT passes. Further studies are needed to characterize the risk-benefit ratio of the DSRT in routine clinical practice.
Identifiants
pubmed: 35672562
doi: 10.1007/s12975-022-01044-1
pii: 10.1007/s12975-022-01044-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
425-433Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Ding D. Endovascular mechanical thrombectomy for acute ischemic stroke: a new standard of care. J Stroke. 2015;17(2):123–6. https://doi.org/10.5853/jos.2015.17.2.123 .
doi: 10.5853/jos.2015.17.2.123
pubmed: 26060799
pmcid: 4460331
Derex L, Cho TH. Mechanical thrombectomy in acute ischemic stroke. Rev Neurol (Paris). 2017;173(3):106–13. https://doi.org/10.1016/j.neurol.2016.06.008 .
doi: 10.1016/j.neurol.2016.06.008
pubmed: 28238346
Koge J, Kato S, Hashimoto T, Nakamura Y, Kawajiri M, Yamada T. Vessel wall injury after stent retriever thrombectomy for internal carotid artery occlusion with duplicated middle cerebral artery. World Neurosurg. 2019;123:54–8. https://doi.org/10.1016/j.wneu.2018.11.223 .
doi: 10.1016/j.wneu.2018.11.223
pubmed: 30529524
Teng D, Pannell JS, Rennert RC, Li J, Li YS, Wong VW, et al. Endothelial trauma from mechanical thrombectomy in acute stroke: in vitro live-cell platform with animal validation. Stroke. 2015;46:1099–106. https://doi.org/10.1161/STROKEAHA.114.007494 .
doi: 10.1161/STROKEAHA.114.007494
pubmed: 25712942
Peschillo S, Tomasello A, Diana F, et al. Comparison of subacute vascular damage caused by ADAPT versus stent retriever devices after thrombectomy in acute ischemic stroke: histological and ultrastructural study in an animal model. Interv Neurol. 2018;7(6):501–12. https://doi.org/10.1159/000491028 .
doi: 10.1159/000491028
pubmed: 30410530
pmcid: 6216788
Gory B, Bresson D, Rouchaud A, Yardin C, Mounayer C. A novel swine model to evaluate arterial vessel injury after mechanical endovascular thrombectomy. Interv Neuroradiol. 2013;19(2):147–52. https://doi.org/10.1177/159101991301900201 .
doi: 10.1177/159101991301900201
pubmed: 23693036
pmcid: 3670051
Arai D, Ishii A, Chihara H, Ikeda H, Miyamoto S. Histological examination of vascular damage caused by stent retriever thrombectomy devices. J Neurointerv Surg. 2016;8(10):992–5. https://doi.org/10.1136/neurintsurg-2015-011968 .
doi: 10.1136/neurintsurg-2015-011968
pubmed: 26508129
Katz JM, Hakoun AM, Dehdashti AR, Chebl AB, Janardhan V, Janardhan V. Understanding the radial force of stroke thrombectomy devices to minimize vessel wall injury: mechanical bench testing of the radial force generated by a novel braided thrombectomy assist device compared to laser-cut stent retrievers in simulated MCA vessel diameters. Interv Neurol. 2020;8(2–6):206–14. https://doi.org/10.1159/000501080 .
doi: 10.1159/000501080
pubmed: 32508903
Xu H, Peng S, Quan T, et al. Tandem stents thrombectomy as a rescue treatment for refractory large vessel occlusions. J Neurointerv Surg. 2021;13(1):33–8. https://doi.org/10.1136/neurintsurg-2020-015822 .
doi: 10.1136/neurintsurg-2020-015822
pubmed: 32641417
García-Tornel Á, Requena M, Rubiera M, et al. When to stop [published correction appears in Stroke. 2020 Jun;51(6):e118]. Stroke. 2019;50(7):1781–1788. https://doi.org/10.1161/STROKEAHA.119.025088
Klisch J, Sychra V, Strasilla C, Taschner CA, Reinhard M, Urbach H, et al. Double solitaire mechanical thrombectomy in acute stroke: effective rescue strategy for refractory artery occlusions? AJNR Am J Neuroradiol. 2015;36:552–6. https://doi.org/10.3174/ajnr.A4133 .
doi: 10.3174/ajnr.A4133
pubmed: 25324495
pmcid: 8013066
Asadi H, Brennan P, Martin A, Looby S, O’Hare A, Thornton J. Double stent-retriever technique in endovascular treatment of middle cerebral artery saddle embolus. J Stroke Cerebrovasc Dis. 2016;25:e9-11. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.10.005 .
doi: 10.1016/j.jstrokecerebrovasdis.2015.10.005
pubmed: 26698640
Aydin K, Barburoglu M, OztopCakmak O, Yesilot N, Vanli ENY, Akpek S. Crossing Y-Solitaire thrombectomy as a rescue treatment for refractory acute occlusions of the middle cerebral artery. J Neurointerv Surg. 2019;11(3):246–50. https://doi.org/10.1136/neurintsurg-2018-014288 .
doi: 10.1136/neurintsurg-2018-014288
pubmed: 30194110
Li Z, Liu P, Zhang L, et al. Y-stent rescue technique for failed thrombectomy in patients with large vessel occlusion: a case series and pooled analysis. Front Neurol. 2020;11:924. Published 2020 Aug 27. https://doi.org/10.3389/fneur.2020.00924
Peschillo S, Diana F, Berge J, Missori P. A comparison of acute vascular damage caused by ADAPT versus a stent retriever device after thrombectomy in acute ischemic stroke: a histological and ultrastructural study in an animal model. J Neurointerv Surg. 2017;9(8):743–9. https://doi.org/10.1136/neurintsurg-2016-012533 .
doi: 10.1136/neurintsurg-2016-012533
pubmed: 27387708
Zaidat OO, Castonguay AC, Linfante I, Gupta R, Martin CO, Holloway WE, et al. First pass effect: a new measure for stroke thrombectomy devices. Stroke. 2018;49:660–6. https://doi.org/10.1161/STROKEAHA.117.020315 .
doi: 10.1161/STROKEAHA.117.020315
pubmed: 29459390
García-Tornel Á, Rubiera M, Requena M, et al. Sudden recanalization: a game-changing factor in endovascular treatment of large vessel occlusion strokes. Stroke. 2020;51(4):1313–6. https://doi.org/10.1161/STROKEAHA.119.028787 .
doi: 10.1161/STROKEAHA.119.028787
pubmed: 32078495
Yin NS, Benavides S, Starkman S, et al. Autopsy findings after intracranial thrombectomy for acute ischemic stroke: a clinicopathologic study of 5 patients. Stroke. 2010;41(5):938–47. https://doi.org/10.1161/STROKEAHA.109.576793 .
doi: 10.1161/STROKEAHA.109.576793
pubmed: 20360544
pmcid: 4120894
Krings T, Mandell DM, Kiehl TR, et al. Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat Rev Neurol. 2011;7(10):547–559. Published 2011 Sep 20. https://doi.org/10.1038/nrneurol.2011.136
Kawashima M, Rhoton AL Jr, Tanriover N, Ulm AJ, Yasuda A, Fujii K. Microsurgical anatomy of cerebral revascularization Part I: anterior circulation. J Neurosurg. 2005;102(1):116–31. https://doi.org/10.3171/jns.2005.102.1.0116 .
doi: 10.3171/jns.2005.102.1.0116
pubmed: 15658104
Sakaoka A, Koshimizu M, Nakamura S, Matsumura K. Quantitative angiographic anatomy of the renal arteries and adjacent aorta in the swine for preclinical studies of intravascular catheterization devices. Exp Anim. 2018;67(2):291–9. https://doi.org/10.1538/expanim.17-0125 .
doi: 10.1538/expanim.17-0125
pubmed: 29353822
pmcid: 5955760