Cohesin-mediated loop anchors confine the locations of human replication origins.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
31
12
2020
accepted:
26
04
2022
pubmed:
9
6
2022
medline:
25
6
2022
entrez:
8
6
2022
Statut:
ppublish
Résumé
DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability
Identifiants
pubmed: 35676475
doi: 10.1038/s41586-022-04803-0
pii: 10.1038/s41586-022-04803-0
pmc: PMC9217744
doi:
Substances chimiques
Cell Cycle Proteins
0
Chromatin
0
Chromosomal Proteins, Non-Histone
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
812-819Subventions
Organisme : NIMH NIH HHS
ID : R01 MH120269
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG011536
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG010658
Pays : United States
Organisme : NIMH NIH HHS
ID : DP1 MH129957
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA052715
Pays : United States
Organisme : NIDDK NIH HHS
ID : U54 DK107965
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK127405
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL129998
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NIDDK NIH HHS
ID : U54 DK107980
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Bellush, J. M. & Whitehouse, I. DNA replication through a chromatin environment. Philos. Trans. R. Soc. B 372, 20160287 (2017).
doi: 10.1098/rstb.2016.0287
Mechali, M. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat. Rev. Mol. Cell Biol. 11, 728–738 (2010).
pubmed: 20861881
doi: 10.1038/nrm2976
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
pubmed: 22495300
pmcid: 3356448
doi: 10.1038/nature11082
Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).
pubmed: 22495304
pmcid: 3555144
doi: 10.1038/nature11049
Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).
pubmed: 23041285
pmcid: 3496039
doi: 10.1016/j.molcel.2012.08.031
Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).
pubmed: 22265598
doi: 10.1016/j.cell.2012.01.010
Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).
pubmed: 23706625
pmcid: 3712340
doi: 10.1016/j.cell.2013.04.053
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
pubmed: 25497547
pmcid: 5635824
doi: 10.1016/j.cell.2014.11.021
Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565 (2020).
pubmed: 32213324
pmcid: 7222625
doi: 10.1016/j.molcel.2020.03.003
Hsieh, T. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553 (2020).
pubmed: 32213323
pmcid: 7703524
doi: 10.1016/j.molcel.2020.03.002
Akgol Oksuz, B. et al. Systematic evaluation of chromosome conformation capture assays. Nat. Methods 18, 1046–1055 (2021).
pubmed: 34480151
pmcid: 8446342
doi: 10.1038/s41592-021-01248-7
Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).
pubmed: 27210764
pmcid: 4889513
doi: 10.1016/j.celrep.2016.04.085
Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178 (2018).
pubmed: 29706548
pmcid: 6065110
doi: 10.1016/j.cell.2018.03.072
Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456 (2015).
pubmed: 26499245
pmcid: 4664323
Petryk, N. et al. Replication landscape of the human genome. Nat. Commun. 7, 10208 (2016).
pubmed: 26751768
pmcid: 4729899
doi: 10.1038/ncomms10208
Zhao, P. A., Sasaki, T. & Gilbert, D. M. High-resolution Repli-Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome Biol. 21, 76 (2020).
pubmed: 32209126
pmcid: 7092589
doi: 10.1186/s13059-020-01983-8
Wang, W. et al. Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Mol. Cell 81, 2975–2988 (2021).
pubmed: 34157308
doi: 10.1016/j.molcel.2021.05.024
Ryba, T. et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761–770 (2010).
pubmed: 20430782
pmcid: 2877573
doi: 10.1101/gr.099655.109
Pope, B. D. et al. Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402–405 (2014).
pubmed: 25409831
pmcid: 4251741
doi: 10.1038/nature13986
Norton, H. K. et al. Detecting hierarchical genome folding with network modularity. Nat. Methods 15, 119–122 (2018).
pubmed: 29334377
pmcid: 6029251
doi: 10.1038/nmeth.4560
Gilgenast, T. G. & Phillips-Cremins, J. E. Systematic evaluation of statistical methods for identifying looping interactions in 5C data. Cell Syst. 8, 197–211 (2019).
pubmed: 30904376
pmcid: 6696950
doi: 10.1016/j.cels.2019.02.006
Fernandez, L. R., Gilgenast, T. G. & Phillips-Cremins, J. E. 3DeFDR: statistical methods for identifying cell type-specific looping interactions in 5C and Hi-C data. Genome Biol. 21, 219 (2020).
pubmed: 32859248
pmcid: 7496221
doi: 10.1186/s13059-020-02061-9
Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).
pubmed: 28985562
pmcid: 5846482
doi: 10.1016/j.cell.2017.09.026
Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).
pubmed: 29094699
pmcid: 5687303
doi: 10.1038/nature24281
Davidson, I. F. et al. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J. 35, 2671–2685 (2016).
pubmed: 27799150
pmcid: 5167347
doi: 10.15252/embj.201695402
Pherson, M., Misulovin, Z., Gause, M. & Dorsett, D. Cohesin occupancy and composition at enhancers and promoters are linked to DNA replication origin proximity in Drosophila. Genome Res. 29, 602–612 (2019).
pubmed: 30796039
pmcid: 6442380
doi: 10.1101/gr.243832.118
Guillou, E. et al. Cohesin organizes chromatin loops at DNA replication factories. Genes Dev. 24, 2812–2822 (2010).
pubmed: 21159821
pmcid: 3003199
doi: 10.1101/gad.608210
de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).
pubmed: 26527277
doi: 10.1016/j.molcel.2015.09.023
Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627 (2015).
pubmed: 26686651
pmcid: 4734140
doi: 10.1016/j.cell.2015.11.024
Besnard, E. et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 19, 837–844 (2012).
pubmed: 22751019
doi: 10.1038/nsmb.2339
Li, Y. et al. Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency. Genome Biol. 22, 206 (2021).
pubmed: 34253239
pmcid: 8276456
doi: 10.1186/s13059-021-02424-w
Sequeira-Mendes, J. et al. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet. 5, e1000446 (2009).
pubmed: 19360092
pmcid: 2661365
doi: 10.1371/journal.pgen.1000446
Chen, Y. H. et al. Transcription shapes DNA replication initiation and termination in human cells. Nat. Struct. Mol. Biol. 26, 67–77 (2019).
pubmed: 30598550
doi: 10.1038/s41594-018-0171-0
Cayrou, C. et al. The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res. 25, 1873–1885 (2015).
pubmed: 26560631
pmcid: 4665008
doi: 10.1101/gr.192799.115
Liu, Y. et al. Transcription shapes DNA replication initiation to preserve genome integrity. Genome Biol. 22, 176 (2021).
pubmed: 34108027
pmcid: 8188667
doi: 10.1186/s13059-021-02390-3
Cadoret, J. C. et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl Acad. Sci. USA 105, 15837–15842 (2008).
pubmed: 18838675
pmcid: 2572913
doi: 10.1073/pnas.0805208105
Oldach, P. & Nieduszynski, C. A. Cohesin-mediated genome architecture does not define DNA replication timing domains. Genes 10, 196 (2019).
pmcid: 6471042
doi: 10.3390/genes10030196
Cremer, M. et al. Cohesin depleted cells rebuild functional nuclear compartments after endomitosis. Nat. Commun. 11, 6146 (2020).
pubmed: 33262376
pmcid: 7708632
doi: 10.1038/s41467-020-19876-6
Sima, J. et al. Identifying cis elements for spatiotemporal control of mammalian DNA replication. Cell 176, 816–830(2019).
pubmed: 30595451
doi: 10.1016/j.cell.2018.11.036
Hiratani, I. et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6, e245 (2008).
pubmed: 18842067
pmcid: 2561079
doi: 10.1371/journal.pbio.0060245
Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017).
pubmed: 28475897
pmcid: 5422210
doi: 10.1016/j.cell.2017.04.013
Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).
pubmed: 33177522
pmcid: 7659001
doi: 10.1038/s41467-020-19532-z
Zhang, D. et al. Alteration of genome folding via contact domain boundary insertion. Nat. Genet. 52, 1076–1087 (2020).
pubmed: 32868908
pmcid: 7541666
doi: 10.1038/s41588-020-0680-8
Dimitrova, D. S., Prokhorova, T. A., Blow, J. J., Todorov, I. T. & Gilbert, D. M. Mammalian nuclei become licensed for DNA replication during late telophase. J. Cell Sci. 115, 51–59 (2002).
pubmed: 11801723
doi: 10.1242/jcs.115.1.51
Ryu, M. J. et al. Direct interaction between cohesin complex and DNA replication machinery. Biochem. Biophys. Res. Commun. 341, 770–775 (2006).
pubmed: 16438930
doi: 10.1016/j.bbrc.2006.01.029
Gros, J. et al. Post-licensing specification of eukaryotic replication origins by facilitated Mcm2-7 sliding along DNA. Mol. Cell 60, 797–807 (2015).
pubmed: 26656162
pmcid: 4680849
doi: 10.1016/j.molcel.2015.10.022
Powell, S. K. et al. Dynamic loading and redistribution of the Mcm2-7 helicase complex through the cell cycle. EMBO J. 34, 531–543 (2015).
pubmed: 25555795
pmcid: 4331006
doi: 10.15252/embj.201488307
Sasaki, T. et al. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units. Mol. Cell. Biol. 26, 1051–1062 (2006).
pubmed: 16428457
pmcid: 1347040
doi: 10.1128/MCB.26.3.1051-1062.2006
Dequeker, B. J. H. et al. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Nature https://doi.org/10.1038/s41586-022-04730-0 (2022).
Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).
pubmed: 28682332
pmcid: 5567812
doi: 10.1038/nature23001