Seasonal anomalies in radioactivity of the near-surface atmosphere in the Chernobyl-affected area of Belarus.
Forecasting models
Forest fires
Main sources
Radioactivity
Seasonal anomalies
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
14
12
2021
accepted:
30
05
2022
pubmed:
9
6
2022
medline:
22
10
2022
entrez:
8
6
2022
Statut:
ppublish
Résumé
Increased radioactivity in the near-surface atmosphere is virtually an annual occurrence in the Gomel region, Belarus. However, there is no explicit evidence as to what causes these anomalies and whether their origin has a strong seasonal association. To establish any such relations, we have analysed long-term radiation monitoring data recorded in the region over the past 17 years from 2003 to 2020 to find that abnormal levels of atmospheric radioactivity in summer and in winter have different origins. Summer spikes are most likely caused by occasional wildfires blazing in contaminated afforested areas in extreme heat weather, such as the wildfires of 2015 and 2020 in the Chernobyl Exclusion Zone, which is confirmed by backward and forward trajectories of the air mass transport at the time calculated using the HYSPLIT model. By contrast, in winter, when a wildfire cannot occur, a potential source of atmospheric radioactivity in the Gomel region may be the use of wood fuel from contaminated territories in residential woodstoves. Measurements of wood ash sampled from local households across the contaminated area and close to the woods show excessively high concentrations of
Identifiants
pubmed: 35676579
doi: 10.1007/s11356-022-21239-1
pii: 10.1007/s11356-022-21239-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
77553-77564Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ager AA, Lasko R, Myroniuk V, Zibtsev S, Day MA, Usenia U, Bogomolov V, Kovalets I, Evers CR (2019) The wildfire problem in areas contaminated by the Chernobyl disaster. Sci Total Environ 696:133954. https://doi.org/10.1016/j.scitotenv.2019.133954
doi: 10.1016/j.scitotenv.2019.133954
ATOMTEX (2021) https://atomtex.com/en/at1315-gamma-beta-spectrometer . Accessed 21 Oct 2021
Barros H, Sajo-Bohus L, Abril JM, Greaves ED (2005) Radioactivity concentration and heavy metal content in fuel oil and oil-ashes in Venezuela. Radioprotection 40:183–189
doi: 10.1051/radiopro:2005s1-029
Beriulev GP, Zatsepina LP, Zontov LB, Sergeev BN, Seregin Yu A et al (1990) An experience of artificial regulation of precipitations with the purposes of eliminating the consequences of disaster on Chernobyl nuclear power plant. Weather Modification on hydrometeorological processes. Proc. of the All-Union Russian Conference, pp. 233-238, (in Russian)
Cambray RS, Cawse PA, Garland JA, Gibson JAB, Johnson P, Lewis GNJ, Newton D, Salmon L, Wade BO (1987) Observations of radioactivity from the Chernobyl accident. Nucl Energy 26(2):77–101
Chatfield C (1978) The Holt-Winters forecasting procedure. J R Stat Soc: Ser C: Appl Stat 27(3):264–279
Drozdovitch V, Zhukova O, Germenchuk M, Khrutchinsky A, Kukhta T, Luckyanov N, Minenko V, Podgaiskaya M, Savkin M, Vakulovsky S, Voillequé P, Bouville A (2013) Database of meteorological and radiation measurements made in Belarus during the first three months following the Chernobyl accident. J Environ Radioact 116:84–92. https://doi.org/10.1016/j.jenvrad.2012.09.010
doi: 10.1016/j.jenvrad.2012.09.010
Dusha-Gudym SI (2005) Transport of radioactive materials by wildland fires in the Chernobyl accident zone: how to address the problem. Int For Fire News 32:119–125
Dvornik AA, Dvornik AM, Korol RA, Shamal NV, Gaponenko SO, Bardyukova AV (2018) Potential threat to human health during forest fires in the Belarusian exclusion zone. J Aerosol Sci Tech 52(8):923–932
doi: 10.1080/02786826.2018.1482408
Dvornik A, Shamal N, Bachura Y, Seglin V, Korol R, Kurilenko R, Kapyltsova A (2021) Post-fire redistribution of
doi: 10.1016/j.jenvrad.2020.106505
Evangeliou N, Grythe H, Klimont Z, Eckhardt S, Lopez-Aparicio S, Stohl A (2020) Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun 11:3381. https://doi.org/10.1038/s41467-020-17201-9
doi: 10.1038/s41467-020-17201-9
Garland JA, Nicholson KW (1991) A review of methods for sampling large airborne particles and associated radioactivity. J Aerosol Sci 22(4):479–499. https://doi.org/10.1016/0021-8502(91)90006-4
doi: 10.1016/0021-8502(91)90006-4
IAEA (2009) Classification of radioactive waste: GSG-1. Safety Standards Series. http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1419_web.pdf . Accessed 23 Oct 2021
IAEA (1999) Health and environmental impacts of electricity generation systems. Technical Reports Series. http://www-pub.iaea.org/MTCD/Publications/PDF/TRS394_scr.pdf . Accessed 23 Oct 2021
Izrael JA, Bogdevich IM (2009) Atlas of contemporary and forecasting aspects of the consequences of the Chernobyl NPP accident on the affected territories in Russia and Belarus. Fund "Ionosphere" NIA-nature, Minsk, p 140 (In Russian)
Kashparov VA, Lundin SM, Kadygrib AM, Protsak VP, Levtchuk SE, Yoschenko VI, Kashpur VA, Talerko NM (2000) Forest fires in the territory contaminated as a result of the Chernobyl accident: radioactive aerosol resuspension and exposure of firefighters. J Environ Radioact 51(3):281–298. https://doi.org/10.1016/S0265-931X(00)00082-5
doi: 10.1016/S0265-931X(00)00082-5
Kashparov V, Zhurba M, Zibtsev S, Mironyuk V, Kireev S (2015) Evaluation of the expected doses of fire brigades at the Chornobyl exclusion zone in April 2015. Yaderna Fyizika ta Energetika 16(4):399–407
Kovalets IV, Romanenko AN, Anulich SN, Ievdin IA (2017) Forecasting of radiological conditions during fires in Chernobyl Exclusion Zone using the JRODOS System. In: In: Decision Support Systems, Proceedings of Theory and Practice Conference. Kyiv, Ukraine, pp 62–65
Kulan A (2006) Seasonal
doi: 10.1016/j.jenvrad.2006.06.010
Martinsson J, Pédehontaa-Hiaa G, Malmborg V, Madsen D, Rääf C (2021) Experimental wildfire induced mobility of radiocesium in a boreal forest environment. Sci Total Environ 792:148310. https://doi.org/10.1016/j.scitotenv.2021.148310
doi: 10.1016/j.scitotenv.2021.148310
Piga D (2010) Processes engaged in the persistence in atmosphere of previously deposited artificial radionuclides. University of Toulon du Sud Toulon Var, Toulon Dissertation, https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/127/43127269.pdf . Accessed 20 Oct 2021
Ramzaev V, Bernhardsson C, Dvornik A, Barkovsky A, Vodovatov A, Jönsson M, Gaponenko S (2020) Calculation of the effective external dose rate to a person staying in the resettlement zone of the Vetka district of the Gomel region of Belarus based on in situ and ex situ assessments in 2016–2018. J Environ Radioact 214–215:106168. https://doi.org/10.1016/j.jenvrad.2020.106168
doi: 10.1016/j.jenvrad.2020.106168
Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Amer Meteor Soc 96:2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1
doi: 10.1175/BAMS-D-14-00110.1
Stoulos S, Besis A, Ioannidou A (2020) Determination of low
doi: 10.1016/j.jenvrad.2020.106383
Taylor SJ, Letham B (2017) Forecasting at scale. Peer J Preprints 5:e3190v2. https://doi.org/10.7287/peerj.preprints.3190v2
doi: 10.7287/peerj.preprints.3190v2
Таlerko M, Kovalets I, Hirao S, Zheleznyak M, Kyrylenko Yu, Lev T, Bogorad V, Kireev S (2020) Radionuclide atmospheric transport after the forest fires in the Chernobyl Exclusion zone in 2015-2018: an impact of the source term parameterization and input meteorological data on modeling results. EGU General Assembly 2020, Vienna, 3–8 May 2020. https://doi.org/10.5194/egusphere-egu2020-10066
Таlerko M, Коvalets I, Lev T, Igarashi Y, Romanenko O (2021) Simulation study of radionuclide atmospheric transport after wildland fires in the Chernobyl Exclusion Zone in April 2020. Atmos Pollut Res 12(3):193–204. https://doi.org/10.1016/j.apr.2021.01.010
Usenia VV (2002) Forest fires, consequences and suppression. Forest Institute of NAS of Belarus, Belarus, p 206 (in Russian)
VENTUSKY (2021) https://www.ventusky.com . Accessed 15 Oct 2021
Ward T, Lange T (2010) The impact of wood smoke on ambient PM
doi: 10.1016/j.envpol.2009.10.016
WHO Regional Office for Europe (2015) Residential heating with wood and coal: health impacts and policy options in Europe and North America. WHO, Copenhagen https://www.euro.who.int/__data/assets/pdf_file/0009/271836/ResidentialHeatingWoodCoalHealthImpacts.pdf . Accessed 21 October 2021
Zibtsev SV, Goldammer JG, Robinson S, Borsuk OA (2015) Fires in nuclear forests: silent threats to the environment and human security. FAO Unasylva 66(243–244):40–51