Dissecting cell fate dynamics in pediatric glioblastoma through the lens of complex systems and cellular cybernetics.

Artificial intelligence Attractors Cancer Cellular decision-making Complex systems Computational medicine Cybernetics Epigenetics Networks Systems oncology

Journal

Biological cybernetics
ISSN: 1432-0770
Titre abrégé: Biol Cybern
Pays: Germany
ID NLM: 7502533

Informations de publication

Date de publication:
08 2022
Historique:
received: 25 08 2021
accepted: 04 05 2022
pubmed: 10 6 2022
medline: 20 7 2022
entrez: 9 6 2022
Statut: ppublish

Résumé

Cancers are complex dynamic ecosystems. Reductionist approaches to science are inadequate in characterizing their self-organized patterns and collective emergent behaviors. Since current approaches to single-cell analysis in cancer systems rely primarily on single time-point multiomics, many of the temporal features and causal adaptive behaviors in cancer dynamics are vastly ignored. As such, tools and concepts from the interdisciplinary paradigm of complex systems theory are introduced herein to decode the cellular cybernetics of cancer differentiation dynamics and behavioral patterns. An intuition for the attractors and complex networks underlying cancer processes such as cell fate decision-making, multiscale pattern formation systems, and epigenetic state-transitions is developed. The applications of complex systems physics in paving targeted therapies and causal pattern discovery in precision oncology are discussed. Pediatric high-grade gliomas are discussed as a model-system to demonstrate that cancers are complex adaptive systems, in which the emergence and selection of heterogeneous cellular states and phenotypic plasticity are driven by complex multiscale network dynamics. In specific, pediatric glioblastoma (GBM) is used as a proof-of-concept model to illustrate the applications of the complex systems framework in understanding GBM cell fate decisions and decoding their adaptive cellular dynamics. The scope of these tools in forecasting cancer cell fate dynamics in the emerging field of computational oncology and patient-centered systems medicine is highlighted.

Identifiants

pubmed: 35678918
doi: 10.1007/s00422-022-00935-8
pii: 10.1007/s00422-022-00935-8
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

407-445

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Alban TJ, Bayik D, Otvos B, Rabljenovic A, Leng L, Jia-Shiun L, Roversi G, Lauko A, Momin AA, Mohammadi AM, Peereboom DM, Ahluwalia MS, Matsuda K, Yun K, Bucala R, Vogelbaum MA, Lathia JD (2020) Glioblastoma myeloid-derived suppressor cell subsets express differential macrophage migration inhibitory factor receptor profiles that can be targeted to reduce immune suppression. Front Immunol 11:1191. https://doi.org/10.3389/fimmu.2020.01191
doi: 10.3389/fimmu.2020.01191 pubmed: 32625208 pmcid: 7315581
Amemiya T, Shibata K, Itoh Y, Itoh K, Watanabe M, Yamaguchi T (2017) Primordial oscillations in life: direct observation of glycolytic oscillations in individual HeLa cervical cancer cells. Chaos 27:104602
pubmed: 29092451 doi: 10.1063/1.4986865
Amson R, Pece S, Marine JC, Di Fiore PP, Telerman A (2013) TPT1/ TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol 23(1):37–46
pubmed: 23122550 doi: 10.1016/j.tcb.2012.10.002
Aranda V, Nolan M, Muthuswamy S (2008) Par complex in cancer: a regulator of normal cell polarity joins the dark side. Oncogene 27:6878–6887
pubmed: 19029931 pmcid: 3017320 doi: 10.1038/onc.2008.340
Archetti M, Pienta KJ (2019) Cooperation among cancer cells: applying game theory to cancer. Nat Rev Cancer 19:110–117
pubmed: 30470829 doi: 10.1038/s41568-018-0083-7
Armingol E, Officer A, Harismendy O et al (2021) Deciphering cell–cell interactions and communication from gene expression. Nat Rev Genet 22:71–88. https://doi.org/10.1038/s41576-020-00292-x
doi: 10.1038/s41576-020-00292-x pubmed: 33168968
Ashby RW (1964) Introduction to cybernetics. Routledge Kegan & Paul, London
Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25:20. https://doi.org/10.1186/s12929-018-0426-4
doi: 10.1186/s12929-018-0426-4 pubmed: 29506506 pmcid: 5838954
Bach K, Pensa S, Zarocsinceva M et al (2021) Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors. Nat Commun 12:1502. https://doi.org/10.1038/s41467-021-21783-3
doi: 10.1038/s41467-021-21783-3 pubmed: 33686070 pmcid: 7940427
Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Gen 5:101–113
doi: 10.1038/nrg1272
Bar-Yam Y (2002) General features of complex systems, encyclopedia of life support systems. EOLSS UNESCO Publishers, Oxford, UK
Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23(10):1124–1134. https://doi.org/10.1038/nm.4409
doi: 10.1038/nm.4409 pubmed: 28985214
Bertalanffy L (1969) General system theory: Foundations, Development, Applications. George Braziller, New York, USA
Biamonte J, Wittek P, Pancotti N et al (2017) Quantum machine learning. Nature 549:195–202. https://doi.org/10.1038/nature23474
doi: 10.1038/nature23474 pubmed: 28905917
Bohm, D (1980) Wholeness and the Implicate Order Routledge
Boija A, Klein IA, Young RA (2021) Biomolecular condensates and cancer. Cancer cell 39(2):174–192
pubmed: 33417833 pmcid: 8721577 doi: 10.1016/j.ccell.2020.12.003
Boileau M, Shirinian M, Gayden T, Harutyunyan AS, Chen C, Mikael LG, Duncan HM, Neumann AL, Arreba-Tutusaus P, De Jay N, Zeinieh M, Rossokhata K, Zhang Y, Nikbakht H, Mouawad C, Massoud R, Frey F, Nasr R, El Cheikh J, El Sabban M, Eppert K (2019) Mutant H3 histones drive human pre-leukemic hematopoietic stem cell expansion and promote leukemic aggressiveness. Nat Commun 10(1):2891. https://doi.org/10.1038/s41467-019-10705-z
doi: 10.1038/s41467-019-10705-z pubmed: 31253791 pmcid: 6599207
Bossomaier TRJ, Green DJ (2000) Complex systems. Cambridge Univ, Press
doi: 10.1017/CBO9780511758744
Brabletz T, Kalluri R, Nieto M et al (2018) EMT in cancer. Nat Rev Cancer 18:128–134. https://doi.org/10.1038/nrc.2017.118
doi: 10.1038/nrc.2017.118 pubmed: 29326430
Brunton S, Kutz J (2019) Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press, Cambridge
doi: 10.1017/9781108380690
Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1(1):98–110
pubmed: 21969178
Capra F, Luisi PL (2014) The systems view of life: a unifying vision. Cambridge University Press, UK
doi: 10.1017/CBO9780511895555
Caragher SP, Hall RR, Ahsan R, Ahmed AU (2018) Monoamines in glioblastoma: complex biology with therapeutic potential. Neuro Oncol 20(8):1014–1025. https://doi.org/10.1093/neuonc/nox210
doi: 10.1093/neuonc/nox210 pubmed: 29126252
Chaligne R, Gaiti F, Silverbush D et al (2021) Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. Nat Genet 53:1469–1479. https://doi.org/10.1038/s41588-021-00927-7
doi: 10.1038/s41588-021-00927-7 pubmed: 34594037 pmcid: 8675181
Chan TE et al (2017) Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst 5(3):251-267e3. https://doi.org/10.1016/j.cels.2017.08.014
doi: 10.1016/j.cels.2017.08.014 pubmed: 28957658 pmcid: 5624513
Chen CC, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF, Jabado N (2020) Histone H3. 3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. Cell 183(6):1617–1633
pubmed: 33259802 pmcid: 7791404 doi: 10.1016/j.cell.2020.11.012
Chung C, Sweha SR, Pratt D, Tamrazi B, Panwalkar P, Banda A, Venneti S (2020) Integrated metabolic and epigenomic reprograming by H3K27M mutations in diffuse intrinsic pontine gliomas. Cancer Cell. https://doi.org/10.1016/j.ccell.2020.07.008
doi: 10.1016/j.ccell.2020.07.008 pubmed: 32795401 pmcid: 7494613
Coffey DS (1998) Self-organization, complexity and chaos: the new biology for medicine. Nature Med 4:882–885
pubmed: 9701230 doi: 10.1038/nm0898-882
Coste C, Neirinckx V, Gothot A, Wislet S, Rogister B (2015) Are neural crest stem cells the missing link between hematopoietic and neurogenic niches? Front Cell Neurosci 9:218. https://doi.org/10.3389/fncel.2015.00218
doi: 10.3389/fncel.2015.00218 pubmed: 26136659 pmcid: 4469833
Couturier CP, Ayyadhury S, Le PU, Nadaf J, Monlong J, Riva G, Allache R, Baig S, Yan X, Bourgey M, Lee C, Wang Y, Wee Yong V, Guiot MC, Najafabadi H, Misic B, Antel J, Bourque G, Ragoussis J, Petrecca K (2020) Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun 11(1):3406. https://doi.org/10.1038/s41467-020-17186-5
doi: 10.1038/s41467-020-17186-5 pubmed: 32641768 pmcid: 7343844
da Rocha EL, Rowe RG, Lundin V, Malleshaiah M, Jha DK, Rambo CR, Li H, North TE, Collins JJ, Daley GQ (2018) Reconstruction of complex single-cell trajectories using cell router. Nat Commun 9(1):892. https://doi.org/10.1038/s41467-018-03214-y
doi: 10.1038/s41467-018-03214-y
Das P, Upadhyay RK, Das P, Ghosh D (2020) Exploring dynamical complexity in a time delayed tumor immune model Chaos: an Interdisciplinary. J Nonlinear Sci. 30(12):123118
Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. https://doi.org/10.1016/j.cell.2012.06.013
doi: 10.1016/j.cell.2012.06.013 pubmed: 22770212
Denholtz M, Bonora G, Chronis C, Splinter E et al (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13(5):602–616. https://doi.org/10.1016/j.stem.2013.08.013
doi: 10.1016/j.stem.2013.08.013 pubmed: 24035354
Denk J et al (2018) MinE conformational switching confers robustness on self-organized Min protein patterns. PNAS 115(18):4553–4558
pubmed: 29666276 pmcid: 5939084 doi: 10.1073/pnas.1719801115
Deshmukh S, Ptack A, Krug B, Jabado N (2021) Oncohistones: a roadmap to stalled development. FEBS J. https://doi.org/10.1111/febs.15963
doi: 10.1111/febs.15963 pubmed: 33969633
Desjardins A, Gromeier M, Herndon JE 2nd, Beaubier N, Bolognesi DP, Friedman AH, Friedman HS, McSherry F, Muscat AM, Nair S, Peters KB, Randazzo D, Sampson JH, Vlahovic G, Harrison WT, McLendon RE, Ashley D, Bigner DD (2018) Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 379(2):150–161. https://doi.org/10.1056/NEJMoa1716435
doi: 10.1056/NEJMoa1716435 pubmed: 29943666 pmcid: 6065102
Domoto T, Pyko IV, Furuta T, Miyashita K, Uehara M, Shimasaki T, Nakada M, Minamoto T (2016) Glycogen synthase kinase-3β is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci 107(10):1363–1372. https://doi.org/10.1111/cas.13028
doi: 10.1111/cas.13028 pubmed: 27486911 pmcid: 5084660
Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N (1994) Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev 74(1):1–47. https://doi.org/10.1152/physrev.1994.74.1.1
doi: 10.1152/physrev.1994.74.1.1 pubmed: 8295931
Erdel F (2017) How communication between nucleosomes enables spreading and epigenetic memory of histone modifications. BioEssays News and Rev In Mol, Cell Dev Biol 39(12):1700053
doi: 10.1002/bies.201700053
Falkovich G, Sreenivasan KR (2006) Lessons from hydrodynamic turbulence. Phys Today 59(4):43–49
doi: 10.1063/1.2207037
Fang X, Kruse K, Lu T, Wang J (2019) Nonequilibrium physics in biology. Rev Mod Phys 91(4):045004
doi: 10.1103/RevModPhys.91.045004
Feinberg A, Koldobskiy M, Göndör A (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 17:284–299. https://doi.org/10.1038/nrg.2016.13
doi: 10.1038/nrg.2016.13 pubmed: 26972587 pmcid: 4888057
Flavahan WA, Gaskell E, Bernstein BE (2017) Epigenetic plasticity and the hallmarks of cancer. Science 357(6348):eaal2380
pubmed: 28729483 pmcid: 5940341 doi: 10.1126/science.aal2380
Folberg R, Maniotis AJ (2004) Vasculogenic mimicry. Apmis 112(7–8):508–525
pubmed: 15563313 doi: 10.1111/j.1600-0463.2004.apm11207-0810.x
Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016–1036
pubmed: 28560055 pmcid: 5446472
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15(9):2038–2049. https://doi.org/10.1016/j.celrep.2016.04.085
doi: 10.1016/j.celrep.2016.04.085 pubmed: 27210764 pmcid: 4889513
Gao L, Huang S, Zhang H, Hua W, Xin S, Cheng L, Guan W, Yu Y, Mao Y, Pei G (2019) Suppression of glioblastoma by a drug cocktail reprogramming tumor cells into neuronal like cells. Sci Rep 9(1):3462. https://doi.org/10.1038/s41598-019-39852-5
doi: 10.1038/s41598-019-39852-5 pubmed: 30837577 pmcid: 6401026
Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56(24):5745–5753
pubmed: 8971186
Gauthier DJ, Bollt E, Griffith A et al (2021) Next generation reservoir computing. Nat Commun 12:5564. https://doi.org/10.1038/s41467-021-25801-2
doi: 10.1038/s41467-021-25801-2 pubmed: 34548491 pmcid: 8455577
Gell-Mann M (1995) What is complexity? Remarks on simplicity and complexity by the nobel prize-winning author of the quark and the jaguar. Complexity 1(1):16–19
doi: 10.1002/cplx.6130010105
Geva-Zatorsky N et al (2006) Oscillations and variability in the p53 system. Mol Syst Biol 2(2006):0033
pubmed: 16773083
Ghosh S, Opala A, Matuszewski M et al (2019) Quantum reservoir processing. npj Quantum Inf 5:35. https://doi.org/10.1038/s41534-019-0149-8
doi: 10.1038/s41534-019-0149-8
Gleick J (2008) Chaos: making a new science, 2nd edn. Penguin Books, New York
Glock P, Brauns F, Halatek J, Frey E, Schwille P (2019) Design of biochemical pattern forming systems from minimal motifs. Elife 8:e48646
pubmed: 31767054 pmcid: 6922632 doi: 10.7554/eLife.48646
Gluzman M, Scott JG, Vladimirsky A (2020) Optimizing adaptive cancer therapy: dynamic programming and evolutionary game theory. Proc Royal Soc b: Biol Sci 287(1925):20192454
doi: 10.1098/rspb.2019.2454
Goldberger AL, Rigney DR, West BJ (1990) Chaos and fractals in human physiology. Sci Am 262(2):42–49
pubmed: 2296715 doi: 10.1038/scientificamerican0290-42
Goodwin B (1965a) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–428
pubmed: 5861813 doi: 10.1016/0065-2571(65)90067-1
Goodwin B (1966) An entrainment model for timed enzyme synthesis in bacteria. Nature 209:479–481
pubmed: 5919577 doi: 10.1038/209479a0
Gottwald GA, Melbourne I (2016) The test for chaos: a review. In: Skokos C, Gottwald G, Laskar J (eds) Chaos detection and predictability lecture notes in physics, vol 915. Springer, Berlin
Gros C (2011) Complex and adaptive dynamical systems: a primer, 2nd edn. Springer, Heidelberg
doi: 10.1007/978-3-642-04706-0
Gryder BE, Nelson CW, Shepard SS (2013) Biosemiotic entropy of the genome: mutations and epigenetic imbalances resulting in cancer. Entropy 15(1):234–261. https://doi.org/10.3390/e15010234
doi: 10.3390/e15010234
Guo J, Zheng J (2017) Hopland: single cell pseudotime recovery using continuous hopfield network-based modelling of waddington’s epigenetic landscape. Bioinformatics 33(14):i102-109
pubmed: 28881967 pmcid: 5870541 doi: 10.1093/bioinformatics/btx232
Halatek J, Frey E (2018) Rethinking pattern formation in reaction–diffusion systems. Nat Phys 14:507–514
doi: 10.1038/s41567-017-0040-5
Hanahan D (2022) Hallmarks of Cancer: New Dimensions. Cancer Discov 12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
doi: 10.1158/2159-8290.CD-21-1059 pubmed: 35022204
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674
pubmed: 21376230 doi: 10.1016/j.cell.2011.02.013
Harutyunyan AS, Chen H, Lu T, Horth C, Nikbakht H, Krug B, Russo C, Bareke E, Marchione DM, Coradin M, Garcia BA, Jabado N, Majewski J (2020) H3K27M in gliomas causes a one-step decrease in H3K27 methylation and reduced spreading within the constraints of H3K36 methylation. Cell Rep 33(7):108390. https://doi.org/10.1016/j.celrep.2020.108390
doi: 10.1016/j.celrep.2020.108390 pubmed: 33207202 pmcid: 7703850
Hasani, R. et al., Liquid Time-constant Networks. arXiv:2006.04439  [cs.LG] (2020)
Heltberg M, Kellogg RA, Krishna S, Tay S, Jensen MH (2016) Noise Induces Hopping between NF-κB Entrainment Modes. Cell Syst 3(6):532-539.e3
pubmed: 28009264 pmcid: 5783698 doi: 10.1016/j.cels.2016.11.014
Heltberg ML, Krishna S, Jensen MH (2019) On chaotic dynamics in transcription factors and the associated effects in differential gene regulation”. Nat Commun 10:71
pubmed: 30622249 pmcid: 6325146 doi: 10.1038/s41467-018-07932-1
Hodges C, Crabtree GR (2012) Dynamics of inherently bounded histone modification domains. Proc Natl Acad Sci USA 109(33):13296–13301. https://doi.org/10.1073/pnas.1211172109
doi: 10.1073/pnas.1211172109 pubmed: 22847427 pmcid: 3421184
Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558
pubmed: 6953413 pmcid: 346238 doi: 10.1073/pnas.79.8.2554
Hu X, Hu Y, Wu F, Leung RWT, Qin J (2020) Integration of single-cell multi-omics for gene regulatory network inference. Comp. Struct. Biotechnol. J 18:1925–1938
doi: 10.1016/j.csbj.2020.06.033
Hu X, Hu Y, Wu F, Leung RWT, Qin J (2020) Integration of single-cell multi-omics for gene regulatory network inference. CA: a Cancer J Clin. 18:1925–1938
Huang S, Ernberg I, Kauffman S (2009) Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semi. Cell Dev Biol. 20(7):869–876
doi: 10.1016/j.semcdb.2009.07.003
Huang S (2006) Multistability and multicellularity: cell fates as high dimensional attractors of gene regulatory networks. In: computational systems biology, Academic Press
Iacono G, Massoni-Badosa R, Heyn H (2019) Single-cell transcriptomics unveils gene regulatory network plasticity. Genome Biol 20:110. https://doi.org/10.1186/s13059-019-1713-4
doi: 10.1186/s13059-019-1713-4 pubmed: 31159854 pmcid: 6547541
Itik M, Banks SP (2010) Chaos in a three-dimensional cancer model. Int J Bifurc. Chaos 20(1):71–79
doi: 10.1142/S0218127410025417
Janson N (2012) Non-linear dynamics of Biological systems. Contemp Phys 53:137–168
doi: 10.1080/00107514.2011.644441
Jensen MH, Krishna S (2012) Inducing phase-locking and chaos in cellular oscillators by modulating the driving stimuli. FEBS Lett 586(11):1664–1668
pubmed: 22673576 doi: 10.1016/j.febslet.2012.04.044
Jensen PB, Pedersen L, Krishna S, Jensen MH (2010) A Wnt oscillator model for somitogenesis. Biophys J 98(6):943–950
pubmed: 20303851 pmcid: 2849083 doi: 10.1016/j.bpj.2009.11.039
Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. https://doi.org/10.1126/science.1063127
doi: 10.1126/science.1063127 pubmed: 11498575
Jessa S, Blanchet-Cohen A, Krug B, Vladoiu M, Coutelier M, Faury D, Poreau B, De Jay N, Hébert S, Monlong J, Farmer WT, Donovan LK, Hu Y, McConechy MK, Cavalli F, Mikael LG, Ellezam B, Richer M, Allaire A, Weil AG, Kleinman CL (2019) Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 51(12):1702–1713. https://doi.org/10.1038/s41588-019-0531-7
doi: 10.1038/s41588-019-0531-7 pubmed: 31768071 pmcid: 6885128
Jin S, MacLean AL, Peng T, Nie Q (2018) scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 34(12):2077–2086. https://doi.org/10.1093/bioinformatics/bty058
doi: 10.1093/bioinformatics/bty058 pubmed: 29415263 pmcid: 6658715
Jones C, Karajannis MA, Jones D, Kieran MW, Monje M, Baker SJ et al (2017) Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 19(2):153–161
pubmed: 27282398
Jost D (2014) Bifurcation in epigenetics: implications in development, proliferation, and diseases. Phys Rev E 89(1):010701
doi: 10.1103/PhysRevE.89.010701
Jost D, Vaillant C (2018) Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance. Nucleic Acids Res 46(5):2252–2264. https://doi.org/10.1093/nar/gky009
doi: 10.1093/nar/gky009 pubmed: 29365171 pmcid: 5861409
Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F (2019) Emerging intersections between neuroscience and glioma biology. Nat Neurosci 22(12):1951–1960. https://doi.org/10.1038/s41593-019-0540-y
doi: 10.1038/s41593-019-0540-y pubmed: 31719671
Kaneko K (2011) Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cell-cell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge. BioEssays : News and Rev Mol, Cell Dev Biol 33(6):403–413. https://doi.org/10.1002/bies.201000153
doi: 10.1002/bies.201000153
Kauffman S (1993) The Origins of Order Oxford University Press
Khain E, Sander LM (2006) Dynamics and pattern formation in invasive tumor growth. Phys Rev Lett 96:188103
pubmed: 16712401 doi: 10.1103/PhysRevLett.96.188103
Khajanchi S, Perc M, Ghosh D (2018) The influence of time delay in a chaotic cancer model. Chaos 28(10):103101
pubmed: 30384633 doi: 10.1063/1.5052496
Khlebodarova TM, Kogai VV, Fadeev SI, Likhoshvai VA (2017) Chaos and hyperchaos in simple gene network with negative feedback and time delays. J Bioinform Comput Biol 15(2):1650042
pubmed: 28052708 doi: 10.1142/S0219720016500426
Khosravi H, Akabane AL, Alloo A, Nazarian RM, Boland GM (2016) Metastatic melanoma with spontaneous complete regression of a thick primary lesion. JAAD Case Reports 2(6):439–441. https://doi.org/10.1016/j.jdcr.2016.09.011
doi: 10.1016/j.jdcr.2016.09.011 pubmed: 27981212 pmcid: 5144746
Kim M et al (2001) Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation on Pt (110). Science 292(5520):1357–1360
pubmed: 11359007 doi: 10.1126/science.1059478
Kinnaird A, Zhao S, Wellen K et al (2016) Metabolic control of epigenetics in cancer. Nat Rev Cancer 16:694–707. https://doi.org/10.1038/nrc.2016.82
doi: 10.1038/nrc.2016.82 pubmed: 27634449
Knudson AG (1971) Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci 68:820–823
pubmed: 5279523 pmcid: 389051 doi: 10.1073/pnas.68.4.820
Knudson AG (2002) Cancer genetics. Am J Med Genet 111(1):96–102. https://doi.org/10.1002/ajmg.10320
doi: 10.1002/ajmg.10320 pubmed: 12124744
Kong L-W, Fan H-W, Grebogi C, Lai Y-C (2021) Machine learning prediction of critical transition and system collapse. Phys Rev Res. https://doi.org/10.1103/physrevresearch.3.013090
doi: 10.1103/physrevresearch.3.013090
Kraft K, Yost KE, Murphy S, Magg A, Long Y, Corces MR, Chang HY (2020) Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. BioRXiv. https://doi.org/10.1101/2020.07.27.223438
doi: 10.1101/2020.07.27.223438 pubmed: 33330864 pmcid: 7724678
Krenning L, Sonneveld S, Tanenbaum ME (2021) Time-resolved single-cell sequencing identifies multiple waves of mRNA decay during mitotic exit. BioRxiv. https://doi.org/10.1101/2021.04.17.440266
doi: 10.1101/2021.04.17.440266
Krieger MS et al (2020) A blueprint for identifying phenotypes and drug targets in complex disorders with empirical dynamics. Patterns 1:100138
pubmed: 33336196 pmcid: 7733879 doi: 10.1016/j.patter.2020.100138
Kunert-Graf J, Sakhanenko N, Galas D (2020) Partial information decomposition and the information delta: a geometric unification disentangling non-pairwise information. Entropy 22(12):1333. https://doi.org/10.3390/e22121333
doi: 10.3390/e22121333 pmcid: 7760044
Ladyman J, Wiesner K (2020) What is a complex system? Yale University Press, New Haven
doi: 10.12987/yale/9780300251104.001.0001
Lam KB, Valkanas K, Djuric U, Diamandis P (2020) Unifying models of glioblastoma’s intratumoral heterogeneity. Neuro-Oncol Adv 2(1):vdaa096
doi: 10.1093/noajnl/vdaa096
Lang AH, Li H, Collins JJ, Mehta P (2014) Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. PLoS Comput Biol 10(8):e1003734
pubmed: 25122086 pmcid: 4133049 doi: 10.1371/journal.pcbi.1003734
Lavarone E, Barbieri CM, Pasini D (2019) Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun 10:1679. https://doi.org/10.1038/s41467-019-09624-w
doi: 10.1038/s41467-019-09624-w pubmed: 30976011 pmcid: 6459869
Lee EY, Muller WJ (2010) Oncogenes and tumor suppressor genes. Cold Spring Harbor Perspect. Biol 2(10):a003236
doi: 10.1101/cshperspect.a003236
Lee C, Robinson M, Willerth SM (2018) Direct reprogramming of glioblastoma cells into neurons using small molecules. ACS Chem Neurosci 9(12):3175–3185. https://doi.org/10.1021/acschemneuro.8b00365
doi: 10.1021/acschemneuro.8b00365 pubmed: 30091580
Lee J, Hyeon DY, Hwang D (2020) Single-cell multiomics: technologies and data analysis methods. Exp Mol Med 52:1428–1442. https://doi.org/10.1038/s12276-020-0420-2
doi: 10.1038/s12276-020-0420-2 pubmed: 32929225 pmcid: 8080692
Lehnertz B, Zhang YW, Boivin I, Mayotte N, Tomellini E, Chagraoui J, Lavallée VP, Hébert J, Sauvageau G (2017) H3
doi: 10.1182/blood-2017-03-774653 pubmed: 28855157
Letellier C et al (2013) What can be learned from a chaotic cancer model? J Theor Biol 322:7–16
pubmed: 23318987 doi: 10.1016/j.jtbi.2013.01.003
Li I, Nabet BY (2019) Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer 18(1):32. https://doi.org/10.1186/s12943-019-0975-5
doi: 10.1186/s12943-019-0975-5 pubmed: 30823926 pmcid: 6397467
Li W, Wang J (2017) Uncovering the underlying mechanism of cancer tumorigenesis and development under an immune microenvironment from global quantification of the landscape. J R Soc Interface 14:20170105
doi: 10.1098/rsif.2017.0105
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369
doi: 10.1126/science.1181369 pubmed: 19815776 pmcid: 2858594
Lim SH, Theo Giorgini L, Moon W, Wettlaufer JS (2020) Predicting critical transitions in multiscale dynamical systems using reservoir computing. Chaos: an Interdiscip J Nonlinear Sci 30(12):123126
doi: 10.1063/5.0023764
Lövkvist C, Howard M (2021) Using computational modelling to reveal mechanisms of epigenetic Polycomb control. Biochem Soc Trans 49(1):71–77
pubmed: 33616630 pmcid: 7925002 doi: 10.1042/BST20190955
Lu Y, Wu T, Gutman O et al (2020) Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol 22:453–464. https://doi.org/10.1038/s41556-020-0485-0
doi: 10.1038/s41556-020-0485-0 pubmed: 32203417
Lulla RR, Saratsis AM, Hashizume R (2016) Mutations in chromatin machinery and pediatric high-grade glioma. Sci Adv 2(3):e1501354
pubmed: 27034984 pmcid: 4803494 doi: 10.1126/sciadv.1501354
Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14:2531–2560. https://doi.org/10.1162/089976602760407955
doi: 10.1162/089976602760407955 pubmed: 12433288
Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, Bjerke L, Clarke M, Vinci M, Nandhabalan M, Temelso S, Popov S, Molinari V, Raman P, Waanders AJ, Han HJ, Gupta S, Marshall L, Zacharoulis S, Vaidya S, Jones C (2017) integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32(4):520-537.e5. https://doi.org/10.1016/j.ccell.2017.08.017
doi: 10.1016/j.ccell.2017.08.017 pubmed: 28966033 pmcid: 5637314
Majzner RG, Ramakrishna S, Yeom KW et al (2022) GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature. https://doi.org/10.1038/s41586-022-04489-4
doi: 10.1038/s41586-022-04489-4 pubmed: 35130560 pmcid: 8967714
Markus M, Hess B (1984) Transition between oscillatory modes in a glycolytic model system. Proc Natn Acad Sci usa 81:4394–4398
doi: 10.1073/pnas.81.14.4394
Markus M, Kuschmitz D, Hess B (1985) Properties of strange attractors in yeast glycolysis. Biophys Chem 22(1–2):95–105
pubmed: 17007784 doi: 10.1016/0301-4622(85)80030-2
Martínez-Prat B, Ignés-Mullol J, Casademunt J et al (2019) Selection mechanism at the onset of active turbulence. Nat Phys 15:362–366. https://doi.org/10.1038/s41567-018-0411-6
doi: 10.1038/s41567-018-0411-6
Mecke KR (1996) Morphological characterization of patterns in reaction-diffusion systems. Phys Rev E 53:4794
doi: 10.1103/PhysRevE.53.4794
Mill CP, Fiskus W, DiNardo CD, Qian Y, Raina K, Rajapakshe K, Perera D, Coarfa C, Kadia TM, Khoury JD, Saenz DT, Saenz DN, Illendula A, Takahashi K, Kornblau SM, Green MR, Futreal AP, Bushweller JH, Crews CM, Bhalla KN (2019) RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 134(1):59–73. https://doi.org/10.1182/blood.2018893982
doi: 10.1182/blood.2018893982 pubmed: 31023702 pmcid: 6609954
Miranda-Gonçalves V, Lameirinhas A, Henrique R, Jerónimo C (2018) Metabolism and epigenetic interplay in cancer: regulation and putative therapeutic targets. Front Genet 9:427. https://doi.org/10.3389/fgene.2018.00427
doi: 10.3389/fgene.2018.00427 pubmed: 30356832 pmcid: 6190739
Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 19:37–51
pubmed: 21274616 pmcid: 3040307 doi: 10.1007/s10577-010-9177-0
Misteli T (2020) The self-organizing genome: principles of genome architecture and function. Cell 183(1):28–45. https://doi.org/10.1016/j.cell.2020.09.014
doi: 10.1016/j.cell.2020.09.014 pubmed: 32976797 pmcid: 7541718
Mitchell M (2011) Complexity: a guided tour. Oxford University Press, New York
Miyashita K, Kawakami K, Nakada M, Mai W, Shakoori A, Fujisawa H, Hayashi Y, Hamada J, Minamoto T (2009) Potential therapeutic effect of glycogen synthase kinase 3beta inhibition against human glioblastoma. Clin Cancer Res: an Off J Am Assoc. Cancer Res. 15(3):887–897. https://doi.org/10.1158/1078-0432.CCR-08-0760
doi: 10.1158/1078-0432.CCR-08-0760
Moreno-Smith M, Lutgendorf SK, Sood AK (2010) Impact of stress on cancer metastasis. Future Oncol 6(12):1863–1881. https://doi.org/10.2217/fon.10.142
doi: 10.2217/fon.10.142 pubmed: 21142861
Nagaraja S, Quezada MA, Gillespie SM, Arzt M, Lennon JJ, Woo PJ, Hovestadt V, Kambhampati M, Filbin MG, Suva ML, Nazarian J, Monje M (2019) Histone variant and cell context determine H3K27M reprogramming of the enhancer landscape and oncogenic state. Mol Cell 76(6):965-980.e12. https://doi.org/10.1016/j.molcel.2019.08.030
doi: 10.1016/j.molcel.2019.08.030 pubmed: 31588023 pmcid: 7104854
Natsume A, Ito M, Katsushima K, Ohka F, Hatanaka A, Shinjo K, Sato S, Takahashi S, Ishikawa Y, Takeuchi I, Shimogawa H, Uesugi M, Okano H, Kim SU, Wakabayashi T, Issa JP, Sekido Y, Kondo Y (2013) Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma. Can Res 73(14):4559–4570. https://doi.org/10.1158/0008-5472.CAN-13-0109
doi: 10.1158/0008-5472.CAN-13-0109
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(4):835-849.e21. https://doi.org/10.1016/j.cell.2019.06.024
doi: 10.1016/j.cell.2019.06.024 pubmed: 31327527 pmcid: 6703186
Neumüller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23(23):2675–2699
pubmed: 19952104 pmcid: 2788323 doi: 10.1101/gad.1850809
Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256
doi: 10.1137/S003614450342480
Noberini R, Robusti G, Bonaldi T (2021) Mass spectrometry-based characterization of histones in clinical samples: applications, progresses, and challenges. FEBS J. https://doi.org/10.1111/febs.15707
doi: 10.1111/febs.15707 pubmed: 33415821
Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA (2018) Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci 115(29):E6697–E6706. https://doi.org/10.1073/pnas.1717730115
doi: 10.1073/pnas.1717730115 pubmed: 29967174 pmcid: 6055145
Oh J, Kim Y, Che L, Kim JB, Chang GE, Cheong E, Ha Y (2017) Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma. PLoS One 12(11):e0178881
pubmed: 29161257 pmcid: 5697826 doi: 10.1371/journal.pone.0178881
Palit S, Heuser C, de Almeida GP, Theis FJ, Zielinski CE (2019) Meeting the challenges of high-dimensional single-cell data analysis in immunology. Front Immunol 10:1515. https://doi.org/10.3389/fimmu.2019.01515
doi: 10.3389/fimmu.2019.01515 pubmed: 31354705 pmcid: 6634245
Park SY, Nam JS (2020) The force awakens: metastatic dormant cancer cells. Exp Mol Med 52:569–581. https://doi.org/10.1038/s12276-020-0423-z
doi: 10.1038/s12276-020-0423-z pubmed: 32300189 pmcid: 7210927
Pathak J, Lu Z, Hunt BR, Girvan M, Ott E (2017) Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos 27(12):121102
pubmed: 29289043 doi: 10.1063/1.5010300
Pathak J, Hunt B, Girvan M, Lu Z, Ott E (2018) Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys Rev Lett 120(2):024102
pubmed: 29376715 doi: 10.1103/PhysRevLett.120.024102
Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J et al (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18):3061–3068
pubmed: 20479398 pmcid: 2903336 doi: 10.1200/JCO.2009.26.7252
Pearl J (2009) Causality (Second Ed., New York: Cambridge University Press
Peles E, Nativ M, Lustig M, Grumet M, Schilling J, Martinez R, Plowman GD, Schlessinger J (1997) Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J 16:978–988
pubmed: 9118959 pmcid: 1169698 doi: 10.1093/emboj/16.5.978
Petralia F, Tignor N, Reva B, Koptyra M, Chowdhury S, Rykunov D, Bocik WE et al (2020) Integrated proteogenomic characterization across major histological types of pediatric brain cancer. Cell 183(7):1962–1985
pubmed: 33242424 pmcid: 8143193 doi: 10.1016/j.cell.2020.10.044
Pikovsky A, Rosenblum M, Kurths J (2001) A universal concept in nonlinear sciences. Self 2:3
Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238
pubmed: 25748930 pmcid: 4355577 doi: 10.1016/j.stem.2015.02.015
Prigogine I (1980) From Being to Becoming: Time and Complexity in the Physical Sciences. W.H. Freeman and Co., New York
Qiu Q, Hu P, Qiu X, Govek KW, Cámara PG, Wu H (2020) Massively parallel and time-resolved RNA sequencing in single cells with scNT-seq. Nat Meth 17(10):991–1001. https://doi.org/10.1038/s41592-020-0935-4
doi: 10.1038/s41592-020-0935-4
Quail T, Golfier S, Elsner M et al (2021) Force generation by protein–DNA co-condensation. Nat Phys 17:1007–1012. https://doi.org/10.1038/s41567-021-01285-1
doi: 10.1038/s41567-021-01285-1
Ramis-Conde I et al (2008) Mathematical modelling of cancer cell invasion of tissue. Math Comp Modelling 47(5–6):533–545
doi: 10.1016/j.mcm.2007.02.034
Rauschert S, Raubenheimer K, Melton PE et al (2020) Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification. Clin Epigenet 12:51. https://doi.org/10.1186/s13148-020-00842-4
doi: 10.1186/s13148-020-00842-4
Restrepo JG, Karma A (2009) Spatiotemporal intracellular calcium dynamics during cardiac alternans. Chaos 19(3):037115
pubmed: 19792040 pmcid: 2771706 doi: 10.1063/1.3207835
Rice S, Jackson T, Crump NT et al (2021) A human fetal liver-derived infant MLL-AF4 acute lymphoblastic leukemia model reveals a distinct fetal gene expression program. Nat Commun 12:6905. https://doi.org/10.1038/s41467-021-27270-z
doi: 10.1038/s41467-021-27270-z pubmed: 34824279 pmcid: 8616957
Rockne RC, Branciamore S, Qi J, Frankhouser DE, O’Meally D, Hua WK, Marcucci G (2020) State-transition analysis of time-sequential gene expression identifies critical points that predict development of acute myeloid leukemia. Cancer Res 80(15):3157–3169
pubmed: 32414754 pmcid: 7416495 doi: 10.1158/0008-5472.CAN-20-0354
Rodríguez-Antona C, Taron M (2015) Pharmacogenomic biomarkers for personalized cancer treatment. J Intern Med 277(2):201–217. https://doi.org/10.1111/joim.12321
doi: 10.1111/joim.12321 pubmed: 25338550
Rössler OE (1976) Chemical turbulence: chaos in a simple reaction-diffusion system. Zeitschrift für Naturforschung A 31(10):1168–1172
doi: 10.1515/zna-1976-1006
Rössler O.E. (1977) Chemical Turbulence: A Synopsis. In: Haken H. [eds] Synergetics. Springer Series in Synergetics, vol 2. Springer, Berlin, Heidelberg
Ruelle D (1995) Turbulence, strange attractors and chaos world scientific series on nonlinear science series A, 16, Singapore
Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Young RA (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science 361(6400):3958. https://doi.org/10.1126/science.aar3958
doi: 10.1126/science.aar3958
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K (2015) Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2(2):152–163. https://doi.org/10.1016/j.gendis.2015.02.001
doi: 10.1016/j.gendis.2015.02.001 pubmed: 26137500 pmcid: 4484766
Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang Y (2018) A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 34(6):964–970
pubmed: 29028984 doi: 10.1093/bioinformatics/btx605
Schreck KC, Allen AN, Wang J, Pratilas CA (2020) Combination MEK and mTOR inhibitor therapy is active in models of glioblastoma. Neuro-oncol Adv. https://doi.org/10.1093/noajnl/vdaa138
doi: 10.1093/noajnl/vdaa138
Schwab ED, Pienta KJ (1996) Cancer as a complex adaptive system. Med Hypotheses 47(3):235–241
pubmed: 8898325 doi: 10.1016/S0306-9877(96)90086-9
Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231
pubmed: 22286061 doi: 10.1038/nature10833
Seo H, Kim W, Lee J, Youn B (2013) Network-based approaches for anticancer therapy. Int J Oncol 43(6):1737–1744
pubmed: 24085339 doi: 10.3892/ijo.2013.2114
Shi H, Yan KK, Ding L, Qian C, Chi H, Yu J (2020) Network approaches for dissecting the immune system. Iscience 23(8):101354
doi: 10.1016/j.isci.2020.101354
Simon M, Hosen I, Gousias K, Rachakonda S, Heidenreich B, Gessi M, Schramm J, Hemminki K, Waha A, Kumar R (2015) TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro Oncol 17(1):45–52
pubmed: 25140036 doi: 10.1093/neuonc/nou158
Singh R, Lanchantin J, Robins G, Qi Y (2016) DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics 32(17):i639–i648. https://doi.org/10.1093/bioinformatics/btw427
doi: 10.1093/bioinformatics/btw427 pubmed: 27587684
Solé RV (2003) Phase Transitions in Unstable Cancer Cell Populations 35(1):117–123. https://doi.org/10.1140/epjb/e2003-00262-8
doi: 10.1140/epjb/e2003-00262-8
Solé RV, Rodríguez-Caso C, Deisboeck TS, Saldaña J (2008) Cancer stem cells as the engine of unstable tumor progression. J Theor Biol 253(4):629–637
pubmed: 18534628 doi: 10.1016/j.jtbi.2008.03.034
Sonnen KF et al (2018) Modulation of phase shift between wnt and notch signaling oscillations controls mesoderm segmentation. Cell 172(5):1079-1090.e12
pubmed: 29474908 pmcid: 5847172 doi: 10.1016/j.cell.2018.01.026
Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14(9):611–622. https://doi.org/10.1038/nrc3793
doi: 10.1038/nrc3793 pubmed: 25118602 pmcid: 4230700
Soshnev AA, Josefowicz SZ, Allis CD (2016) Greater than the sum of parts: complexity of the dynamic epigenome. Mol Cell 62(5):681–694. https://doi.org/10.1016/j.molcel.2016.05.004
doi: 10.1016/j.molcel.2016.05.004 pubmed: 27259201 pmcid: 4898265
Stanková K, Brown JS, Dalton WS, Gatenby RA (2019) Optimizing cancer treatment using game theory: a review. JAMA Oncol 5(1):96–103
pubmed: 30098166 pmcid: 6947530 doi: 10.1001/jamaoncol.2018.3395
Steinbichler TB, Dudás J, Skvortsov S et al (2019) Therapy resistance mediated by exosomes. Mol Cancer 18:58. https://doi.org/10.1186/s12943-019-0970-x
doi: 10.1186/s12943-019-0970-x pubmed: 30925921 pmcid: 6441190
Strogatz S (2003) Sync: the emerging science of spontaneous order. Hyperion Press, NY
Strogatz SH (2015) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press, Boulder
Stuart T, Satija R (2019) Integrative single-cell analysis. Nat Rev Genet 20(5):257–272. https://doi.org/10.1038/s41576-019-0093-7
doi: 10.1038/s41576-019-0093-7 pubmed: 30696980
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177(7):1888–1902
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Su Z, Zang T, Liu ML et al (2014) Reprogramming the fate of human glioma cells to impede brain tumor development. Cell Death Dis 5:e1463. https://doi.org/10.1038/cddis.2014.425
doi: 10.1038/cddis.2014.425 pubmed: 25321470 pmcid: 4649522
Sugihara G et al (2012) Detecting causality in complex ecosystems. Science 338(6106):496–500
pubmed: 22997134 doi: 10.1126/science.1227079
Sun Z, Zhang Y, Jia J et al (2020) H3K36me3, message from chromatin to DNA damage repair. Cell Biosci 10:9. https://doi.org/10.1186/s13578-020-0374-z
doi: 10.1186/s13578-020-0374-z pubmed: 32021684 pmcid: 6995143
Suvà ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, Bernstein BE (2014) Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157(3):580–594
pubmed: 24726434 pmcid: 4004670 doi: 10.1016/j.cell.2014.02.030
Takens, F. [1981] Detecting strange attractors in turbulence. Lecture Notes in mathematics [Springer-Verlag], 898:366–381
Tam WL, Weinberg RA (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19(11):1438–1449. https://doi.org/10.1038/nm.3336
doi: 10.1038/nm.3336 pubmed: 24202396 pmcid: 4190672
Taniguchi K, Karin M (2018) NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18:309–324
pubmed: 29379212 doi: 10.1038/nri.2017.142
Tian B, Nowak DE, Brasier AR (2005) A TNF-induced gene expression program under oscillatory NF-κB control. BMC Genomics 6:137
pubmed: 16191192 pmcid: 1262712 doi: 10.1186/1471-2164-6-137
Tian T, Wan J, Song Q et al (2019) Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat Mach Intell 1:191–198
doi: 10.1038/s42256-019-0037-0
Tiana G, Jensen MH (2013) The dynamics of genetic control in the cell: the good and bad of being late. Phil Trans Royal Soc A: Math, Phys Eng Sci 371(1999):20120469
doi: 10.1098/rsta.2012.0469
Tomasetti C, Vogelstein B (2015) Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81
pubmed: 25554788 pmcid: 4446723 doi: 10.1126/science.1260825
Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond b: Biol Sci 237(641):37–72
doi: 10.1098/rstb.1952.0012
Uthamacumaran A, Craig M (2022) Algorithmic reconstruction of glioblastoma network complexity. Iscience 25(5):104179. https://doi.org/10.1016/j.isci.2022.104179
doi: 10.1016/j.isci.2022.104179 pubmed: 35479408 pmcid: 9036113
Van den Berge K, Roux de Bézieux H, Street K, Saelens W, Cannoodt R, Saeys Y, Clement L (2020) Trajectory-based differential expression analysis for single-cell sequencing data. Nature Commun 11(1):1–13
doi: 10.1038/s41467-019-13993-7
van der Pompe G, Antoni MH, Heijnen CJ (1996) Elevated basal cortisol levels and attenuated ACTH and cortisol responses to a behavioral challenge in women with metastatic breast cancer. Psychoneuroendocrinology 21(4):361–374. https://doi.org/10.1016/0306-4530(96)00009-1
doi: 10.1016/0306-4530(96)00009-1 pubmed: 8844875
Van’t Veer LJ, Bernards R (2008) Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452(7187):564–570
pubmed: 18385730 doi: 10.1038/nature06915
Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponnuswami A, Ni L, Woo PJ, Taylor KR, Agarwal A, Regev A, Brang D, Vogel H, Hervey-Jumper S, Bergles DE, Suvà ML, Malenka RC, Monje M (2019) Electrical and synaptic integration of glioma into neural circuits. Nature 573(7775):539–545. https://doi.org/10.1038/s41586-019-1563-y
doi: 10.1038/s41586-019-1563-y pubmed: 31534222 pmcid: 7038898
Verstraeten D et al (2007) An experimental unification of reservoir computing methods. Neural Netw 20:391–403
pubmed: 17517492 doi: 10.1016/j.neunet.2007.04.003
Vidal M, Cusick ME, Barabási AL (2011) Interactome networks and human disease. Nat Rev Genet 144(6):986–998
Waddington C (1942) Canalization of development, and the inheritance of acquired characters. Nature 150:563–565
doi: 10.1038/150563a0
Waddington CH (1957) The strategy of the Genes; a discussion of some aspects of theoretical biology, Allen and Unwin, London
Wang J (2015) Landscape and flux theory of non-equilibrium dynamical systems with application to biology. Adv Phys 64:1–137
doi: 10.1080/00018732.2015.1037068
Wang Z, Yuan H, Sun C, Xu L, Chen Y, Zhu Q, Zhao H, Huang Q, Dong J, Lan Q (2015) GATA2 promotes glioma progression through EGFR/ERK/Elk-1 pathway. Medical Oncol 32(4):87. https://doi.org/10.1007/s12032-015-0522-1
doi: 10.1007/s12032-015-0522-1
Wang L, Nie R, Yu Z et al (2020) An interpretable deep-learning architecture of capsule networks for identifying cell-type gene expression programs from single-cell RNA-sequencing data. Nat Mach Intell 2:693–703
doi: 10.1038/s42256-020-00244-4
Wang J, Ma A, Chang Y et al (2021a) scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nat Commun 12:1882
pubmed: 33767197 pmcid: 7994447 doi: 10.1038/s41467-021-22197-x
Wang X et al (2021b) Transcription factor-based gene therapy to treat glioblastoma through direct neuronal conversion. Cancer Biol Med. https://doi.org/10.20892/j.issn.2095-3941.2020.0499
doi: 10.20892/j.issn.2095-3941.2020.0499 pubmed: 34931767 pmcid: 9196059
Wettmann L, Kruse K (2018) The Min-protein oscillations in Escherichia coli: an example of self-organized cellular protein waves. Phil Trans Royal Soc b: Biol Sci 373(1747):20170111
doi: 10.1098/rstb.2017.0111
Wiener N (1961) Cybernetics: Or control and communication in the animal and the machine 2nd version. MIT Press
Williams J, Xu B, Putnam D et al (2021) MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors. Genome Biol 22:24. https://doi.org/10.1186/s13059-020-02220-y
doi: 10.1186/s13059-020-02220-y pubmed: 33461601 pmcid: 7814737
Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16:15–42
pubmed: 6035757 doi: 10.1016/0022-5193(67)90051-3
Wirsching HG, Weller M (2020) Does neuronal activity promote glioma progression? Trends in Cancer 6(1):1–3. https://doi.org/10.1016/j.trecan.2019.11.002
doi: 10.1016/j.trecan.2019.11.002 pubmed: 31952775
Wolfram, S (eds) (1988) Complex systems theory. In: emerging syntheses in science: proceedings of the founding workshops of the santa fe institute. Addison-Wesley. p. 183–9
Xia Y, Shen S, Verma IM (2014) NF-κB, an active player in human cancers. Cancer Immunol Res 2(9):823–830
pubmed: 25187272 pmcid: 4155602 doi: 10.1158/2326-6066.CIR-14-0112
Xiong S, Feng Y, Cheng L (2019) Cellular reprogramming as a therapeutic target in cancer. Trends Cell Biol 29(8):623–634. https://doi.org/10.1016/j.tcb.2019.05.001
doi: 10.1016/j.tcb.2019.05.001 pubmed: 31153655
Yabo YA, Niclou SP, Golebiewska A (2022) Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neuro-oncology 24(5):669–682
pubmed: 34932099 doi: 10.1093/neuonc/noab269
Yang M, Brackenbury WJ (2013) Membrane potential and cancer progression. Front Physiol 4:185. https://doi.org/10.3389/fphys.2013.00185
doi: 10.3389/fphys.2013.00185 pubmed: 23882223 pmcid: 3713347
Yang E, Wang X, Gong Z et al (2020) Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Sig Transduct Target Ther 5:242. https://doi.org/10.1038/s41392-020-00359-5
doi: 10.1038/s41392-020-00359-5
Yanovich-Arad G, Ofek P, Yeini E, Mardamshina M, Danilevsky A, Shomron N, Grossman R, Satchi-Fainaro R, Geiger T (2021) Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Rep 34(9):108787. https://doi.org/10.1016/j.celrep.2021.108787
doi: 10.1016/j.celrep.2021.108787 pubmed: 33657365
Yu H, Zhu S, Zhou B, Xue H, Han JD (2008) Inferring causal relationships among different histone modifications and gene expression. Genome Res 18(8):1314–1324. https://doi.org/10.1101/gr.073080.107
doi: 10.1101/gr.073080.107 pubmed: 18562678 pmcid: 2493438
Yuen BT, Knoepfler PS (2013) Histone H3 3 mutations: a variant path to cancer. Cancer cell 24(5):567–574
pubmed: 24229707 doi: 10.1016/j.ccr.2013.09.015
Zahir N, Sun R, Gallahan D et al (2020) Characterizing the ecological and evolutionary dynamics of cancer. Nat Genet 52:759–767
pubmed: 32719518 doi: 10.1038/s41588-020-0668-4
Zenil H, Kiani NA, Tegnér J (2016) Methods of information theory and algorithmic complexity for network biology. Semin Cell Dev Biol 51:32–43
pubmed: 26802516 doi: 10.1016/j.semcdb.2016.01.011
Zenil H, Kiani NA, Marabita F, Deng Y, Elias S, Schmidt A, Tegner J (2019) An algorhmic information calculus for causal discovery and reprogramming systems. Iscience 19:1160–1172
pubmed: 31541920 pmcid: 6831824 doi: 10.1016/j.isci.2019.07.043
Zenil H, Kiani NA, Abrahao FS, Tegnér J (2020) Algorithmic Information Dynamics Scholarpedia 15(7):53143
Zhang Y, Kutateladze TG (2019) Liquid–liquid phase separation is an intrinsic physicochemical property of chromatin. Nat Struct Mol Biol 26:1085–1086. https://doi.org/10.1038/s41594-019-0333-8
doi: 10.1038/s41594-019-0333-8 pubmed: 31695191
Zhou S, Abdouh M, Arena V, Arena M, Arena GO (2017) Reprogramming malignant cancer cells toward a benign phenotype following exposure to human embryonic stem cell microenvironment. PLoS ONE 12(1):e0169899. https://doi.org/10.1371/journal.pone.0169899
doi: 10.1371/journal.pone.0169899 pubmed: 28068409 pmcid: 5222525
Zhou P, Wang S, Li T et al (2021) Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics. Nat Commun 12:5609. https://doi.org/10.1038/s41467-021-25548-w
doi: 10.1038/s41467-021-25548-w pubmed: 34556644 pmcid: 8460805

Auteurs

Abicumaran Uthamacumaran (A)

Department of Physics (Alumni), Concordia University, Montreal, QC, Canada. a_utham@live.concordia.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH