Surface biophysical features fusion in remote sensing for improving land crop/cover classification accuracy.
Fusion
Land crop/cover
Random forest
Remote sensing
Surface biophysical features
Journal
The Science of the total environment
ISSN: 1879-1026
Titre abrégé: Sci Total Environ
Pays: Netherlands
ID NLM: 0330500
Informations de publication
Date de publication:
10 Sep 2022
10 Sep 2022
Historique:
received:
08
01
2022
revised:
16
05
2022
accepted:
02
06
2022
pubmed:
10
6
2022
medline:
25
6
2022
entrez:
9
6
2022
Statut:
ppublish
Résumé
Preparing up-to-date land crop/cover maps is important to study in order to achieve food security. Therefore, the aim of this study was to evaluate the impact of surface biophysical features in the land crop/cover classification accuracy and introduce a new fusion-based method with more accurate results for land crop/cover classification. For this purpose, multi-temporal images from Sentinel 1 and 2, and an actual land crop map prepared by Agriculture and Agri-Food Canada (AAFC) in 2019 were used for 3 test sites in Ontario, Canada. Firstly, surface biophysical features maps were prepared based on spectral indices from Sentinel 2 including Normalized Difference Vegetation Index (NDVI), Index-based Built-up Index (IBI), Wetness, Albedo, and Brightness and co-polarization (VV) and cross-polarization (VH) from Sentinel 1 for different dates. Then, different scenarios were generated; these included single surface biophysical features as well as a combination of several surface biophysical features. Secondly, land crop/cover maps were prepared for each scenario based on the Random Forest (RF). In the third step, based on the voting strategy, classification maps from different scenarios were combined. Finally, the accuracy of the land crop/cover maps obtained from each of the scenario was evaluated. The results showed that the average overall accuracy of land crop/cover maps obtained from individual scenario (one feature) including NDVI, IBI, Wetness, Albedo, Brightness, VV and VH were 66%, 68%, 63%, 60%, 57%, 62% and 58%, respectively, which by the surface biophysical features fusion, the overall accuracy of land crop/cover maps increased to 83%. Also, by combining the classification results obtained from different scenarios based on voting strategy, the overall accuracy increased to 89%. The results of this study indicate that the feature level-based fusion of surface biophysical features and decision level based fusion of land crop/cover maps obtained from various scenarios increases the accuracy of land crop/cover classification.
Identifiants
pubmed: 35679933
pii: S0048-9697(22)03617-8
doi: 10.1016/j.scitotenv.2022.156520
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
156520Informations de copyright
Copyright © 2022 Elsevier B.V. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.