Coding recognition of the dose-effect interdependence of small biomolecules encrypted on paired chromatographic-based microassay arrays.


Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 06 04 2022
accepted: 31 05 2022
revised: 26 05 2022
pubmed: 11 6 2022
medline: 22 7 2022
entrez: 10 6 2022
Statut: ppublish

Résumé

The discovery of small biomolecules has suffered from the lack of a comprehensive framework to express the intrinsic correlation between bioactivity and the contribution from small molecules in complex samples with molecular and bioactivity diversity. Here, by mapping a sample's 2D-HPTLC fingerprint to microplates, paired chromatographic-based microassay arrays are created, which can be used as quasi-chips to characterize multiple attributes of chromatographic components; as the array differential expression of the bioactivity and molecular attributes of irregular chromatographic spots for dose-effect interdependent encoding; and also as the automatic-collimated array mosaics of the multi-attributes of each component itself encrypted by its chromatographic fingerprint. Based on this homologous framework, we propose a correlating recognition strategy for small biomolecules through their self-consistent chromatographic behavior characteristics. In the approach, the small biomolecule recognition in diverse compounds is transformed into a constraint satisfaction problem, which is addressed through examining the dose-effect interdependence of the homologous 2D code pairs by an array matching algorithm, instead of preparing diverse compound monomers of complex test samples for identification item-by-item. Furthermore, considering the dose-effect interdependent 2D code pairs as links and the digital-specific quasimolecular ions as nodes, an extendable self-consistent framework that correlates mammalian cell phenotypic and target-based bioassays with small biomolecules is established. Therefore, the small molecule contributions and the correlations of bioactivities, as well as their pathways, can be comprehensively revealed, so as to improve the reliability and efficiency of screening. This strategy was successfully applied to galangal, and demonstrated the high-throughput digital preliminary screening of small biomolecules in a natural product.

Identifiants

pubmed: 35680658
doi: 10.1007/s00216-022-04162-9
pii: 10.1007/s00216-022-04162-9
pmc: PMC9183755
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5991-6001

Subventions

Organisme : Traditional Chinese Medicine Bureau of Guangdong Province
ID : 20141152
Organisme : Traditional Chinese Medicine Bureau of Guangdong Province
ID : 20181153

Informations de copyright

© 2022. Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8(6):531–41. https://doi.org/10.1038/nchem.2479 .
doi: 10.1038/nchem.2479 pubmed: 27219696
Organization WH. Who traditional medicine strategy: 2014–2023. WHO, Geneva
Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19(5):299–310. https://doi.org/10.1038/nrg.2018.4 .
doi: 10.1038/nrg.2018.4 pubmed: 29479082 pmcid: 5990367
Weston AD, Hood L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J Proteome Res. 2004;3(2):179–96. https://doi.org/10.1021/pr0499693 .
doi: 10.1021/pr0499693 pubmed: 15113093
Schenone M, Dančík V, Wagner BK, Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013;9(4):232–40. https://doi.org/10.1038/nchembio.1199 .
doi: 10.1038/nchembio.1199 pubmed: 23508189 pmcid: 5543995
Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507–19. https://doi.org/10.1038/nrd3480 .
doi: 10.1038/nrd3480 pubmed: 21701501
Iwata H, Kojima R, Okuno Y. An in silico approach for integrating phenotypic and target-based approaches in drug discovery. Mol Inf. 2019;38:1900096. https://doi.org/10.1002/minf.201900096 .
doi: 10.1002/minf.201900096
Croston GE. The utility of target-based discovery. Expert Opin Drug Discov. 2017;12(5):427–9. https://doi.org/10.1080/17460441.2017.1308351 .
doi: 10.1080/17460441.2017.1308351 pubmed: 28306350
Helgeland K, Jonsen J, Laland S, Lygren T, Rømcke O. Biological activity of a brownish-yellow pigment produced from vitamin B12 by Aerobacter aerogenes. Nature. 1963;199(4893):604–5. https://doi.org/10.1038/199604a0 .
doi: 10.1038/199604a0 pubmed: 14072016
Bjorseth A, Eidsa G, Gether J, Landmark L, Moller M. Detection of mutagens in complex samples by the Salmonella assay applied directly on thin-layer chromatography plates. Science. 1982;215(4528):87–9. https://doi.org/10.1126/science.7031897 .
doi: 10.1126/science.7031897 pubmed: 7031897
Jamshidi-Aidji M, Morlock GE. From bioprofiling and characterization to bioquantification of natural antibiotics by direct bioautography linked to high-resolution mass spectrometry: exemplarily shown for Salvia miltiorrhiza root. Anal Chem. 2016;88(22):10979–86. https://doi.org/10.1021/acs.analchem.6b02648 .
doi: 10.1021/acs.analchem.6b02648 pubmed: 27766834
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, … Chen L (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal Chem 128:115923.  https://doi.org/10.1016/j.trac.2020.115923
Ma H, Horiuchi KY. Chemical microarray: a new tool for drug screening and discovery. Drug Discov Today. 2006;11(13–14):661–8. https://doi.org/10.1016/j.drudis.2006.05.002 .
doi: 10.1016/j.drudis.2006.05.002 pubmed: 16793536 pmcid: 2577215
Rothbauer M, Wartmann D, Charwat V, Ertl P. Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol Adv. 2015;33(6):948–61. https://doi.org/10.1016/j.biotechadv.2015.06.006 .
doi: 10.1016/j.biotechadv.2015.06.006 pubmed: 26133396
Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2017;17(2):97–113. https://doi.org/10.1038/nrd.2017.232 .
doi: 10.1038/nrd.2017.232 pubmed: 29242609
Janzen WP. Screening technologies for small molecule discovery: the state of the art. Chem Biol. 2014;21(9):1162–70. https://doi.org/10.1016/j.chembiol.2014.07.015 .
doi: 10.1016/j.chembiol.2014.07.015 pubmed: 25237860
Buchberger AR, DeLaney K, Johnson J, Li L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2017;90(1):240–65. https://doi.org/10.1021/acs.analchem.7b04733 .
doi: 10.1021/acs.analchem.7b04733 pubmed: 29155564
Ferey J, Da Silva D, Lafite P, Daniellou R, Maunit B. TLC-UV hyphenated with MALDI-TOFMS for the screening of invertase substrates in plant extracts. Talanta. 2017;170:419–24. https://doi.org/10.1016/j.talanta.2017.04.040 .
doi: 10.1016/j.talanta.2017.04.040 pubmed: 28501191
Galarce-Bustos O, Pavón-Pérez J, Henríquez-Aedo K, Aranda M. An improved method for a fast screening of α-glucosidase inhibitors in cherimoya fruit (Annona cherimola Mill.) applying effect-directed analysis via high-performance thin-layer chromatography-bioassay-mass spectrometry. J Chromatogr A. 2019;460415. https://doi.org/10.1016/j.chroma.2019.460415 .
Hood L, Galas D. The digital code of DNA. Nature. 2003;421(6921):444–8. https://doi.org/10.1038/nature01410 .
doi: 10.1038/nature01410 pubmed: 12540920
Gellman SH. Introduction: molecular recognition. Chem Rev. 1997;97(5):1231–2. https://doi.org/10.1021/cr970328j .
doi: 10.1021/cr970328j pubmed: 11851448
Small C, Sousa D. Spatiotemporal evolution of COVID-19 infection and detection within night light networks: comparative analysis of USA and China. Appl Netw Sci. 2021;6:10. https://doi.org/10.1007/s41109-020-00345-4 .
doi: 10.1007/s41109-020-00345-4 pubmed: 33614901 pmcid: 7877336
Levin N, Kyba CCM, Zhang Q, Miguel ASD, Elvidge CD. Remote sensing of night lights: a review and an outlook for the future. Remote Sens Environ. 2020;237(C):111443. https://doi.org/10.1016/j.rse.2019.111443 .
Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci. 2004;101(39):14036–9. https://doi.org/10.1073/pnas.0406115101 .
doi: 10.1073/pnas.0406115101 pubmed: 15381774 pmcid: 521116
Cheng Y, Li Y, Li J, Deng Y. A rapid, micro-scale preliminary screening method for active components in galangal with protective effect against hydrogen peroxide induced cell apoptosis through “thin layer chromatography” and “tetrazolium-based colorimetric assay” array correspondence. J Chromatogr A. 2015;1395:167–72. https://doi.org/10.1016/j.chroma.2015.03.062 .
doi: 10.1016/j.chroma.2015.03.062 pubmed: 25882590
Wong SF, Low KH, Khor SM. Differential-based biosensor array for fluorescence-chemometric discrimination and the quantification of subtle chloropropanols by cross-reactive serum albumin scaffolding. Talanta. 2020;218: 121169. https://doi.org/10.1016/j.talanta.2020.121169 .
doi: 10.1016/j.talanta.2020.121169 pubmed: 32797922
Riccio G, Nuzzo G, Zazo G, Coppola D, Senese G, Romano L, Costantini M, Ruocco N, Bertolino M, Fontana A, Ianora A, Verde C, Giordano D, Lauritano C. Bioactivity screening of antarctic sponges reveals anticancer activity and potential cell death via ferroptosis by mycalols. Mar Drugs. 2021;19(8):459. https://doi.org/10.3390/md19080459 .
doi: 10.3390/md19080459 pubmed: 34436298 pmcid: 8400861
Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, … Stockwell BR. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016;12(7):497–503. https://doi.org/10.1038/nchembio.2079 .
Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59. https://doi.org/10.1016/j.cell.2009.06.034 .
doi: 10.1016/j.cell.2009.06.034 pubmed: 19682730 pmcid: 4892125
Shen H, Zhang B, Xu H, Sun Y, Wu Q, Shen H, Liu Y. Microfluidic-based G-quadruplex ligand displacement assay for alkaloid anticancer drug screening. J Pharm Biomed Anal. 2017;134:333–9. https://doi.org/10.1016/j.jpba.2016.10.024 .
doi: 10.1016/j.jpba.2016.10.024 pubmed: 27816252
Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallee-Belisle A, … Plaxco KW. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci. 2010;107(24):10837–10841. https://doi.org/10.1073/pnas.100563210
Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc. 2003;125(27):8102–3. https://doi.org/10.1021/ja034876s .
doi: 10.1021/ja034876s pubmed: 12837070
Geng Y, Peveler WJ, Rotello V. Array-based, “chemical nose” sensing in diagnostics and drug discovery. Angew Chem. 2018;131:2–14. https://doi.org/10.1002/ange.201809607 .
doi: 10.1002/ange.201809607
Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J, … Tong W. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol. 2014;32(9):926–932. https://doi.org/10.1038/nbt.3001 .
Yoshioka N, Zangerl B, Phu J, Choi AYJ, Khuu SK, Masselos K, … Kalloniatis M. Consistency of structure-function correlation between spatially scaled visual field stimuli and in vivo OCT ganglion cell counts. Investig Opthalmol Vis Sci. 2018;59(5):1693. https://doi.org/10.1167/iovs.17-23683 .
Terstappen GC, Schlüpen C, Raggiaschi R, Gaviraghi G. Target deconvolution strategies in drug discovery. Nat Rev Drug Discov. 2007;6(11):891–903. https://doi.org/10.1038/nrd2410 .
doi: 10.1038/nrd2410 pubmed: 17917669
Han MA, Lee DH, Woo SM, Seo, BR, Min K, Kim S, … Kwon TK. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells. Sci Reports 2016;6(1):18642. https://doi.org/10.1038/srep18642 .
Phosrithong N, Ungwitayatorn J. Molecular docking study on anticancer activity of plant-derived natural products. Med Chem Res. 2009;19(8):817–35. https://doi.org/10.1007/s00044-009-9233-5 .
doi: 10.1007/s00044-009-9233-5
Bu X, Xiao G, Gu L, Zhang M. Chemical study of Alpinia officinarum. J Chin Med Mater. 2000;2:84–7.

Auteurs

Yifeng Deng (Y)

Guangdong Key Laboratory for Research & Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China. dengyf@gdmu.edu.cn.

Zhenpeng Lin (Z)

Guangdong Key Laboratory for Research & Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China.

Yuan Cheng (Y)

Guangdong Key Laboratory for Research & Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH