In vivo detection of hydrogen sulfide in the brain of live mouse: application in neuroinflammation models.
Gasotransmitter
Hydrogen sulfide
Imaging agent
Neuroinflammation
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
received:
28
03
2022
accepted:
25
05
2022
pubmed:
11
6
2022
medline:
5
10
2022
entrez:
10
6
2022
Statut:
ppublish
Résumé
Hydrogen sulfide (H Utilizing a bis(thiosemicarbazone) backbone, a fluorescent ATSM-FITC conjugate was synthesized. Its copper complex, Cu(ATSM-FITC) was thoroughly tested as a biosensor for H The Cu(ATSM-FITC) complex reacts instantly with H Our biosensor can be readily utilized to study brain H
Identifiants
pubmed: 35680737
doi: 10.1007/s00259-022-05854-1
pii: 10.1007/s00259-022-05854-1
doi:
Substances chimiques
Coordination Complexes
0
Fluorescent Dyes
0
Ligands
0
Organometallic Compounds
0
Thiosemicarbazones
0
Copper
789U1901C5
Fluorescein-5-isothiocyanate
I223NX31W9
Hydrogen Sulfide
YY9FVM7NSN
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4073-4087Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996;16:1066–71. https://doi.org/10.1523/JNEUROSCI.16-03-01066.1996 .
doi: 10.1523/JNEUROSCI.16-03-01066.1996
pubmed: 8558235
pmcid: 6578817
Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, et al. A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal. 2019;31:1–38. https://doi.org/10.1089/ars.2017.7058 .
doi: 10.1089/ars.2017.7058
pubmed: 29790379
pmcid: 6551999
Nagpure BV, Bian JS. Brain, learning, and memory: role of H
doi: 10.1007/978-3-319-18144-8_10
pubmed: 26162836
Gong QH, Shi XR, Hong ZY, Pan LL, Liu XH, Zhu YZ. A new hope for neurodegeneration: possible role of hydrogen sulfide. J Alzheimers Dis. 2011;24(Suppl 2):173–82. https://doi.org/10.3233/JAD-2011-110128 .
doi: 10.3233/JAD-2011-110128
pubmed: 21441657
Zhang JY, Ding YP, Wang Z, Kong Y, Gao R, Chen G. Hydrogen sulfide therapy in brain diseases: from bench to bedside. Med Gas Res. 2017;7:113–9. https://doi.org/10.4103/2045-9912.208517 .
doi: 10.4103/2045-9912.208517
pubmed: 28744364
pmcid: 5510292
Bae SK, Heo CH, Choi DJ, Sen D, Joe EH, Cho BR, et al. A ratiometric two-photon fluorescent probe reveals reduction in mitochondrial H
doi: 10.1021/ja404004v
pubmed: 23745510
Giovinazzo D, Bursac B, Sbodio JI, Nalluru S, Vignane T, Snowman AM, et al. Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3b and inhibiting Tau hyperphosphorylation. Proc Natl Acad Sci USA. 2021;118:e2017225118. https://doi.org/10.1073/pnas.2017225118 .
Zhang X, Bian JS. Hydrogen sulfide: a neuromodulator and neuroprotectant in the central nervous system. ACS Chem Neurosci. 2014;5:876–83. https://doi.org/10.1021/cn500185g .
doi: 10.1021/cn500185g
pubmed: 25230373
Wallace JL, Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov. 2015;14:329–45. https://doi.org/10.1038/nrd4433 .
doi: 10.1038/nrd4433
pubmed: 25849904
Kang JM, Li Z, Organ CL, Park CM, Yang CT, Pacheco A, et al. pH-Controlled hydrogen sulfide release for myocardial ischemia-reperfusion injury. J Am Chem Soc. 2016;138:6336–9. https://doi.org/10.1021/jacs.6b01373 .
doi: 10.1021/jacs.6b01373
pubmed: 27172143
Ibrahim H, Serag A, Farag MA. Emerging analytical tools for the detection of the third gasotransmitter H
doi: 10.1016/j.jare.2020.05.018
pubmed: 33318873
Lippert AR, New EJ, Chang CJ. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J Am Chem Soc. 2011;133:10078–80. https://doi.org/10.1021/ja203661j .
doi: 10.1021/ja203661j
pubmed: 21671682
Sasakura K, Hanaoka K, Shibuya N, Mikami Y, Kimura Y, Komatsu T, et al. Development of a highly selective fluorescence probe for hydrogen sulfide. J Am Chem Soc. 2011;133:18003–5. https://doi.org/10.1021/ja207851s .
doi: 10.1021/ja207851s
pubmed: 21999237
Lin VS, Lippert AR, Chang CJ. Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H
doi: 10.1073/pnas.1302193110
pubmed: 23589874
pmcid: 3645565
Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev. 2015;44:4596–618. https://doi.org/10.1039/c4cs00298a .
doi: 10.1039/c4cs00298a
pubmed: 25474627
pmcid: 4456340
Hammers MD, Taormina MJ, Cerda MM, Montoya LA, Seidenkranz DT, Parthasarathy R, et al. A bright fluorescent probe for H
doi: 10.1021/jacs.5b04196
pubmed: 26061541
pmcid: 4543995
Shimamoto K, Hanaoka K. Fluorescent probes for hydrogen sulfide (H
doi: 10.1016/j.niox.2014.11.008
pubmed: 25461270
Pak YL, Li J, Ko KC, Kim G, Lee JY, Yoon J. Mitochondria-targeted reaction-based fluorescent probe for hydrogen sulfide. Anal Chem. 2016;88:5476–81. https://doi.org/10.1021/acs.analchem.6b00956 .
doi: 10.1021/acs.analchem.6b00956
pubmed: 27094621
Peng JJ, Teoh CL, Zeng X, Samanta A, Wang L, Xu W, et al. Development of a highly selective, sensitive, and fast response upconversion luminescent platform for hydrogen sulfide detection. Adv Funct Mater. 2016;26:191–9. https://doi.org/10.1002/adfm.201503715 .
doi: 10.1002/adfm.201503715
Sarkar S, Ha YS, Soni N, An GI, Lee W, Kim MH, et al. Immobilization of the gas signaling molecule H
doi: 10.1002/anie.201603813
Krasnovskaya O, Spector D, Zlobin A, Pavlov K, Gorelkin P, Erofeev A, et al. Metals in imaging of Alzheimer’s disease. Int J Mol Sci. 2020;21:9190. https://doi.org/10.3390/ijms21239190 .
McInnes LE, Noor A, Kysenius K, Cullinane C, Roselt P, McLean CA, et al. Potential diagnostic imaging of Alzheimer’s disease with copper-64 complexes that bind to amyloid-beta plaques. Inorg Chem. 2019;58:3382–95. https://doi.org/10.1021/acs.inorgchem.8b03466 .
doi: 10.1021/acs.inorgchem.8b03466
pubmed: 30785268
Noor A, Hayne DJ, Lim S, Van Zuylekom JK, Cullinane C, Roselt PD, et al. Copper bis(thiosemicarbazonato)-stilbenyl complexes that bind to amyloid-beta plaques. Inorg Chem. 2020;59:11658–69. https://doi.org/10.1021/acs.inorgchem.0c01520 .
doi: 10.1021/acs.inorgchem.0c01520
pubmed: 32799487
Paterson BM, Cullinane C, Crouch PJ, White AR, Barnham KJ, Rose PD, et al. Modification of biodistribution and brain uptake of copper bis(thiosemicarbazonato) complexes by the incorporation of amine and polyamine functional groups. Inorg Chem. 2019;58:4540–52. https://doi.org/10.1021/acs.inorgchem.9b00117 .
doi: 10.1021/acs.inorgchem.9b00117
pubmed: 30869878
Paterson BM, Donnelly PS. Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem Soc Rev. 2011;40:3005–18. https://doi.org/10.1039/c0cs00215a .
doi: 10.1039/c0cs00215a
pubmed: 21409228
Singh NK, Kumbhar AA, Pokharel YR, Yadav PN. Anticancer potency of copper(II) complexes of thiosemicarbazones. J Inorg Biochem. 2020;210: 111134. https://doi.org/10.1016/j.jinorgbio.2020.111134 .
doi: 10.1016/j.jinorgbio.2020.111134
pubmed: 32673842
Vavere AL, Lewis JS. Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 2007;43:4893–902. https://doi.org/10.1039/b705989b .
Andreozzi EM, Torres JB, Sunassee K, Dunn J, Walker-Samuel S, Szanda I, et al. Studies of copper trafficking in a mouse model of Alzheimer’s disease by positron emission tomography: comparison of
doi: 10.1039/c7mt00227k
pubmed: 29063080
Hickey JL, Lim S, Hayne DJ, Paterson BM, White JM, Villemagne VL, et al. Diagnostic imaging agents for Alzheimer’s disease: copper radiopharmaceuticals that target abeta plaques. J Am Chem Soc. 2013;135:16120–32. https://doi.org/10.1021/ja4057807 .
doi: 10.1021/ja4057807
pubmed: 24070589
Takano Y, Shimamoto K, Hanaoka K. Chemical tools for the study of hydrogen sulfide (H
doi: 10.3164/jcbn.15-91
pubmed: 26798192
Holland JP, Aigbirhio FI, Betts HM, Bonnitcha PD, Burke P, Christlieb M, et al. Functionalized bis(thiosemicarbazonato) complexes of zinc and copper: synthetic platforms toward site-specific radiopharmaceuticals. Inorg Chem. 2007;46:465–85. https://doi.org/10.1021/ic0615628 .
doi: 10.1021/ic0615628
pubmed: 17279826
Sarkar S, Bhatt N, Ha YS, Huynh PT, Soni N, Lee W, et al. High in vivo stability of
doi: 10.1021/acs.jmedchem.7b01671
pubmed: 29240422
Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, et al. Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B. 2018;8:320–38. https://doi.org/10.1016/j.apsb.2018.03.010 .
doi: 10.1016/j.apsb.2018.03.010
pubmed: 29881672
pmcid: 5989919
Xi L, Jiang H. Image-guided surgery using multimodality strategy and molecular probes. WIREs Nanomed Nanobiotechnol. 2016;8:46–60. https://doi.org/10.1002/wnan.1352 .
doi: 10.1002/wnan.1352
Velusamy N, Binoy A, Bobba KN, Nedungadi D, Mishra N, Bhuniya S. A bioorthogonal fluorescent probe for mitochondrial hydrogen sulfide: new strategy for cancer cell labeling. Chem Commun. 2017;53:8802–5. https://doi.org/10.1039/c7cc05339h .
doi: 10.1039/c7cc05339h
Chen H, Gong X, Liu X, Li Z, Zhang J, Yang X-F. A nitroso-based fluorogenic probe for rapid detection of hydrogen sulfide in living cells. Sens Actuators B Chem. 2019;281:542–8. https://doi.org/10.1016/j.snb.2018.10.086 .
doi: 10.1016/j.snb.2018.10.086
Magde D, Wong R, Seybold PG. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem Photobiol. 2002;75:327–34. https://doi.org/10.1562/0031-8655(2002)075%3c0327:Fqyatr%3e2.0.Co;2 .
doi: 10.1562/0031-8655(2002)075<0327:Fqyatr>2.0.Co;2
pubmed: 12003120
Paul BD, Snyder SH, Kashfi K. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol. 2021;38:101772. https://doi.org/10.1016/j.redox.2020.101772 .
Carter RN, Morton NM. Cysteine and hydrogen sulphide in the regulation of metabolism: insights from genetics and pharmacology. J Pathol. 2016;238:321–32. https://doi.org/10.1002/path.4659 .
doi: 10.1002/path.4659
pubmed: 26467985
Sun Q, Collins R, Huang S, Holmberg-Schiavone L, Anand GS, Tan CH, et al. Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H
doi: 10.1074/jbc.M805459200
pubmed: 19019829
Wu Z, Liang D, Tang X. Visualizing hydrogen sulfide in mitochondria and lysosome of living cells and in tumors of living mice with positively charged fluorescent chemosensors. Anal Chem. 2016;88:9213–8. https://doi.org/10.1021/acs.analchem.6b02459 .
doi: 10.1021/acs.analchem.6b02459
pubmed: 27537069
Kim JY, Sarkar S, Bobba KN, Huynh PT, Bhise A, Yoo J. Development of dansyl based copper(II) complex to detect hydrogen sulfide in hypoxia. Org Biomol Chem. 2019;17:7088–94. https://doi.org/10.1039/c9ob00948e .
doi: 10.1039/c9ob00948e
pubmed: 31290912
Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2:541–53. https://doi.org/10.1602/neurorx.2.4.541 .
doi: 10.1602/neurorx.2.4.541
pubmed: 16489364
pmcid: 1201314
Yang J, Minkler P, Grove D, Wang R, Willard B, Dweik R, et al. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun Biol. 2019;2:194. https://doi.org/10.1038/s42003-019-0431-5 .
doi: 10.1038/s42003-019-0431-5
pubmed: 31123718
pmcid: 6529520
Akahoshi N, Kamata S, Kubota M, Hishiki T, Nagahata Y, Matsuura T, et al. Neutral aminoaciduria in cystathionine beta-synthase-deficient mice; an animal model of homocystinuria. Am J Physiol Renal Physiol. 2014;306:F1462–76. https://doi.org/10.1152/ajprenal.00623.2013 .
doi: 10.1152/ajprenal.00623.2013
pubmed: 24761004
Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ. Evaluation of
pubmed: 9935074
Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou ZM, Cirino G, et al. Selectivity of commonly used pharmacological inhibitors for cystathionine synthase (CBS) and cystathionine lyase (CSE). Brit J Pharmacol. 2013;169:922–32. https://doi.org/10.1111/bph.12171 .
doi: 10.1111/bph.12171
Shatalin K, Nuthanakanti A, Kaushik A, Shishov D, Peselis A, Shamovsky I, et al. Inhibitors of bacterial H
doi: 10.1126/science.abd8377
pubmed: 34112687
Moest RR. Hydrogen sulfide determination by the methylene blue method. Anal Chem. 1975;47:1204–5. https://doi.org/10.1021/ac60357a008 .
doi: 10.1021/ac60357a008
Savelieff MG, Lee S, Liu Y, Lim MH. Untangling amyloid-beta, tau, and metals in Alzheimer’s disease. ACS Chem Biol. 2013;8:856–65. https://doi.org/10.1021/cb400080f .
doi: 10.1021/cb400080f
pubmed: 23506614
Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: Time for a paradigm shift. Neuron. 2017;95:1246–65. https://doi.org/10.1016/j.neuron.2017.07.010 .
doi: 10.1016/j.neuron.2017.07.010
pubmed: 28910616
pmcid: 5678753
Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease Nat Rev Dis Primers. 2017;3:17013. https://doi.org/10.1038/nrdp.2017.13 .
doi: 10.1038/nrdp.2017.13
pubmed: 28332488
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16:142. https://doi.org/10.1186/s12974-019-1516-2 .
doi: 10.1186/s12974-019-1516-2
pubmed: 31291966
pmcid: 6617684
Chun H, Im H, Kang YJ, Kim Y, Shin JH, Won W, et al. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H
doi: 10.1038/s41593-020-00735-y
pubmed: 33199896
Hong J, Yoon D, Nam Y, Seo D, Kim JH, Kim MS, et al. Lipopolysaccharide administration for a mouse model of cerebellar ataxia with neuroinflammation. Sci Rep. 2020;10:13337. https://doi.org/10.1038/s41598-020-70390-7 .
doi: 10.1038/s41598-020-70390-7
pubmed: 32770064
pmcid: 7414878
Jha MK, Jeon S, Jin M, Ock J, Kim JH, Lee WH, et al. The pivotal role played by lipocalin-2 in chronic inflammatory pain. Exp Neurol. 2014;254:41–53. https://doi.org/10.1016/j.expneurol.2014.01.009 .
doi: 10.1016/j.expneurol.2014.01.009
pubmed: 24440229
Tao H, Guo J, Ma Y, Zhao Y, Jin T, Gu L, et al. Luminescence imaging of acute liver injury by biodegradable and biocompatible nanoprobes. ACS Nano. 2020;14:11083–99. https://doi.org/10.1021/acsnano.0c00539 .
doi: 10.1021/acsnano.0c00539
pubmed: 32790342
Kumar M, Sandhir R. Hydrogen Sulfide in physiological and pathological mechanisms in brain. CNS Neurol Disord Drug Targets. 2018;17:654–70. https://doi.org/10.2174/1871527317666180605072018 .
doi: 10.2174/1871527317666180605072018
pubmed: 29866024
Eto K, Asada T, Arima K, Makifuchi T, Kimura H. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun. 2002;293:1485–8. https://doi.org/10.1016/S0006-291X(02)00422-9 .
doi: 10.1016/S0006-291X(02)00422-9
pubmed: 12054683
DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(Suppl 2):136–53. https://doi.org/10.1111/jnc.13607 .
doi: 10.1111/jnc.13607
pubmed: 26990767
pmcid: 5025335
Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A. Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets. 2011;10:621–34. https://doi.org/10.2174/187152711796235014 .
doi: 10.2174/187152711796235014
pubmed: 21631404