Severe cellular stress drives apoptosis through a dual control mechanism independently of p53.
Journal
Cell death discovery
ISSN: 2058-7716
Titre abrégé: Cell Death Discov
Pays: United States
ID NLM: 101665035
Informations de publication
Date de publication:
09 Jun 2022
09 Jun 2022
Historique:
received:
14
01
2022
accepted:
01
06
2022
revised:
30
05
2022
entrez:
10
6
2022
pubmed:
11
6
2022
medline:
11
6
2022
Statut:
epublish
Résumé
For past two decades, p53 has been claimed as the primary sensor initiating apoptosis. Under severe cellular stress, p53 transcriptional activity activates BH3-only proteins such as Bim, Puma, or Noxa to nullify the inhibitory effects of anti-apoptotic proteins on pro-apoptotic proteins for mitochondrial outer membrane permeabilization. Cellular stress determines the expression level of p53, and the amount of p53 corresponds to the magnitude of apoptosis. However, our studies indicated that Bim and Puma are not the target genes of p53 in three cancer models, prostate cancer, glioblastoma, and osteosarcoma. Bim counteracted with Bcl-xl to activate apoptosis independently of p53 in response to doxorubicin-induced severe DNA damage in prostate cancer. Moreover, the transcriptional activity of p53 was more related to cell cycle arrest other than apoptosis for responding to DNA damage stress generated by doxorubicin in prostate cancer and glioblastoma. A proteasome inhibitor that causes protein turnover dysfunction, bortezomib, produced apoptosis in a p53-independent manner in glioblastoma and osteosarcoma. p53 in terms of both protein level and nuclear localization in combining doxorubicin with bortezomib treatment was obviously lower than when using DOX alone, inversely correlated with the magnitude of apoptosis in glioblastoma. Using a BH3-mimetic, ABT-263, to treat doxorubicin-sensitive p53-wild type and doxorubicin-resistant p53-null osteosarcoma cells demonstrated only limited apoptotic response. The combination of doxorubicin or bortezomib with ABT-263 generated a synergistic outcome of apoptosis in both p53-wild type and p53-null osteosarcoma cells. Together, this suggested that p53 might have no role in doxorubicin-induced apoptosis in prostate cancer, glioblastoma and osteosarcoma. The effects of ABT-263 in single and combination treatment of osteosarcoma or prostate cancer indicated a dual control to regulate apoptosis in response to severe cellular stress. Whether our findings only apply in these three types of cancers or extend to other cancer types remains to be explored.
Identifiants
pubmed: 35680784
doi: 10.1038/s41420-022-01078-2
pii: 10.1038/s41420-022-01078-2
pmc: PMC9184497
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
282Subventions
Organisme : Kaohsiung Medical University (KMU)
ID : KMUH110-0M54
Informations de copyright
© 2022. The Author(s).
Références
Nat Cell Biol. 2015 Oct;17(10):1270-81
pubmed: 26344567
Cell Death Discov. 2019 Aug 27;5:131
pubmed: 31482012
Cell Cycle. 2022 Jun;21(11):1153-1165
pubmed: 35311459
Science. 2000 May 12;288(5468):1053-8
pubmed: 10807576
Cancer Res. 2019 Jul 15;79(14):3595-3607
pubmed: 31138526
Science. 2006 Feb 10;311(5762):847-51
pubmed: 16469926
Pharmacogenet Genomics. 2011 Jul;21(7):440-6
pubmed: 21048526
Oncogene. 2017 Jul 13;36(28):3943-3956
pubmed: 28288132
Am J Pathol. 2000 Nov;157(5):1415-30
pubmed: 11073801
Mol Cell. 2001 Mar;7(3):683-94
pubmed: 11463392
J Exp Clin Cancer Res. 2010 Jan 22;29:8
pubmed: 20096120
Nat Rev Drug Discov. 2003 Aug;2(8):611-2
pubmed: 12908468
Nat Rev Drug Discov. 2002 Feb;1(2):111-21
pubmed: 12120092
Structure. 2006 Mar;14(3):451-6
pubmed: 16531229
Cold Spring Harb Perspect Biol. 2013 Sep 01;5(9):
pubmed: 24003207
Nat Rev Mol Cell Biol. 2014 Jan;15(1):49-63
pubmed: 24355989
Life Sci. 2003 Sep 5;73(16):2047-58
pubmed: 12899928
Cell Death Discov. 2019 Dec 4;5:147
pubmed: 31815002
Curr Biol. 1998 Jan 29;8(3):145-55
pubmed: 9443911
Nat Rev Clin Oncol. 2020 Jul;17(7):395-417
pubmed: 32203277
Cell Cycle. 2018;17(17):2175-2186
pubmed: 30198376
Semin Oncol. 2017 Dec;44(6):377-380
pubmed: 29935898
Blood. 2006 Jan 1;107(1):257-64
pubmed: 16166592
Cell Res. 2019 May;29(5):347-364
pubmed: 30948788
Semin Cell Dev Biol. 2015 Mar;39:20-5
pubmed: 25617598
Cell Death Differ. 2013 Apr;20(4):576-88
pubmed: 23306555
Oncotarget. 2017 Jan 31;8(5):8921-8946
pubmed: 27888811
Oncogene. 2006 Aug 7;25(34):4798-811
pubmed: 16892092
Cell Death Differ. 2015 Jul;22(7):1071-80
pubmed: 25952548
Cell. 2010 Dec 23;143(7):1192, 1192.e1-2
pubmed: 21183080
Cell Death Discov. 2021 Oct 4;7(1):275
pubmed: 34608124
Nature. 1991 Jul 25;352(6333):345-7
pubmed: 1852210
Cancer Cell. 2018 Dec 10;34(6):879-891
pubmed: 30537511
Cell Cycle. 2016;15(3):394-402
pubmed: 26694174
Am J Pathol. 2011 Jan;178(1):355-60
pubmed: 21224072
Drugs. 2009;69(7):859-88
pubmed: 19441872
J Clin Oncol. 2005 Jul 20;23(21):4776-89
pubmed: 16034054
Curr Biol. 2013 May 6;23(9):782-7
pubmed: 23602475
Cell Death Differ. 2018 Jan;25(1):104-113
pubmed: 29149101
Cell Death Differ. 2018 Jan;25(1):46-55
pubmed: 29053143
Mol Cell. 2016 Mar 3;61(5):695-704
pubmed: 26942674
Cell Death Differ. 2018 Mar;25(3):486-541
pubmed: 29362479
Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32
pubmed: 20683470
Nat Rev Cancer. 2002 Aug;2(8):594-604
pubmed: 12154352
Nat Rev Drug Discov. 2014 Mar;13(3):217-36
pubmed: 24577402
Cell Death Dis. 2019 Feb 21;10(3):177
pubmed: 30792387