Microfluidics for understanding model organisms.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
09 06 2022
09 06 2022
Historique:
received:
17
06
2021
accepted:
20
05
2022
entrez:
10
6
2022
pubmed:
11
6
2022
medline:
14
6
2022
Statut:
epublish
Résumé
New microfluidic systems for whole organism analysis and experimentation are catalyzing biological breakthroughs across many fields, from human health to fundamental biology principles. This perspective discusses recent microfluidic tools to study intact model organisms to demonstrate the tremendous potential for these integrated approaches now and into the future. We describe these microsystems' technical features and highlight the unique advantages for precise manipulation in areas including immobilization, automated alignment, sorting, sensory, mechanical and chemical stimulation, and genetic and thermal perturbation. Our aim is to familiarize technologically focused researchers with microfluidics applications in biology research, while providing biologists an entrée to advanced microengineering techniques for model organisms.
Identifiants
pubmed: 35680898
doi: 10.1038/s41467-022-30814-6
pii: 10.1038/s41467-022-30814-6
pmc: PMC9184607
doi:
Types de publication
Journal Article
Review
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3195Informations de copyright
© 2022. The Author(s).
Références
Kitano, H. Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007).
Konno, M. et al. State-of-the-art technology of model organisms for current human medicine. Diagnostics 10, 1–11 (2020).
doi: 10.3390/diagnostics10060392
Bonini, N. M. & Berger, S. L. The sustained impact of model organisms—in genetics and epigenetics. Genetics 205, 1–4 (2017).
pubmed: 28049700
doi: 10.1534/genetics.116.187864
Morgan, T. H. Sex limited inheritance in Drosophila. Science 32, 120–122, http://www.jstor.org/stable/1635471 (1910).
pubmed: 17759620
doi: 10.1126/science.32.812.120
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
pubmed: 9486653
doi: 10.1038/35888
Zehring, W. A. et al. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 39, 369–376 (1984).
pubmed: 6094014
doi: 10.1016/0092-8674(84)90015-1
Ashburner, M., Kent, G., & Goic, R. S. H. Drosophila: A Laboratory Handbook (Cold Spring Harbor Laboratory Press, 2005).
Meneely, P. M., Dahlberg, C. L. & Rose, J. K. Working with worms: Caenorhabditis elegans as a model organism. Curr. Protoc. Essent. Lab. Tech. 19, 1–35 (2019).
doi: 10.1002/cpet.35
Scheler, O., Postek, W. & Garstecki, P. Recent developments of microfluidics as a tool for biotechnology and microbiology. Curr. Opin. Biotechnol. 55, 60–67 (2019).
pubmed: 30172910
doi: 10.1016/j.copbio.2018.08.004
Ma, J., Wang, Y. & Liu, J. Biomaterials meet microfluidics: from synthesis technologies to biological applications. Micromachines 8, 255 (2017).
Bhattacharjee, N., Urrios, A., Kang, S. & Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab Chip 16, 1720–1742 (2016).
pubmed: 27101171
pmcid: 4862901
doi: 10.1039/C6LC00163G
Goldstein, B. & King, N. The future of cell biology: emerging model organisms. Trends Cell Biol. 26, 818–824 (2016).
pubmed: 27639630
pmcid: 5077642
doi: 10.1016/j.tcb.2016.08.005
Delubac, D. et al. Microfluidic system with integrated microinjector for automated Drosophila embryo injection. Lab Chip 12, 4911–4919 (2012).
pubmed: 23042419
doi: 10.1039/c2lc40104e
Ghaemi, R., Rezai, P., Nejad, F. R. & Selvaganapathy, P. R. Characterization of microfluidic clamps for immobilizing and imaging of Drosophila melanogaster larva’s central nervous system. Biomicrofluidics 11, 034113 (2017).
Ghannad-Rezaie, M., Wang, X., Mishra, B., Collins, C. & Chronis, N. Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae. PLoS One 7, e29869 (2012).
Wen, Q. et al. Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron 76, 750–761 (2012).
pubmed: 23177960
pmcid: 3508473
doi: 10.1016/j.neuron.2012.08.039
Chung, K. & Lu, H. Automated high-throughput cell microsurgery on-chip. Lab Chip 9, 2764–2766 (2009).
pubmed: 19967110
doi: 10.1039/b910703g
Rohde, C. B., Zeng, F., Gonzalez-Rubio, R., Angel, M. & Yanik, M. F. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl Acad. Sci. USA. 104, 13891–13895 (2007).
pubmed: 17715055
pmcid: 1955819
doi: 10.1073/pnas.0706513104
Chung, K., Crane, M. M. & Lu, H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat. Methods 5, 637–643 (2008).
pubmed: 18568029
doi: 10.1038/nmeth.1227
Chronis, N., Zimmer, M. & Bargmann, C. I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 4, 727–731 (2007).
pubmed: 17704783
doi: 10.1038/nmeth1075
Subendran, S., Kang, C. W. & Chen, C. Y. Comprehensive hydrodynamic investigation of zebrafish tail beats in a microfluidic device with a shape memory alloy. Micromachines 12, 1–10 (2021).
doi: 10.3390/mi12010068
Chaudhury, A. R. et al. On chip cryo-anesthesia of Drosophila larvae for high resolution in vivo imaging applications. Lab Chip 17, 2303–2322 (2017).
pubmed: 28613308
doi: 10.1039/C7LC00345E
Martinez, M. A. Q. et al. Rapid degradation of C. elegans proteins at single-cell resolution with a synthetic auxin. G3 Genes, Genomes, Genet 10, 267–280 (2020).
Keil, W., Kutscher, L. M., Shaham, S. & Siggia, E. D. Long-term high-resolution imaging of developing C. elegans larvae with microfluidics. Dev. Cell 40, 202–214 (2017).
pubmed: 28041904
doi: 10.1016/j.devcel.2016.11.022
Sun, L. et al. Microfluidic devices for monitoring the root morphology of Arabidopsis Thaliana in situ. Anal. Sci. 37, 605–611 (2021).
pubmed: 33100305
doi: 10.2116/analsci.20P281
Zhang, G. et al. Zebrafish larva orientation and smooth aspiration control for microinjection. IEEE Trans. Biomed. Eng. 68, 47–55 (2021).
pubmed: 32746018
doi: 10.1109/TBME.2020.2999896
Noori, A., Selvaganapathy, P. R. & Wilson, J. Microinjection in a microfluidic format using flexible and compliant channels and electroosmotic dosage control. Lab Chip 9, 3202–3211 (2009).
pubmed: 19865726
doi: 10.1039/b909961a
Furlong, E. E. M., Profitt, D. & Scott, M. P. Automated sorting of live transgenic embryos. Nat. Biotechnol. 19, 153–156 (2001).
pubmed: 11175730
doi: 10.1038/84422
Utharala, R., Tseng, Q., Furlong, E. E. M. & Merten, C. A. A versatile, low-cost, multiway microfluidic sorter for droplets, cells, and embryos. Anal. Chem. 90, 5982–5988 (2018).
pubmed: 29688703
doi: 10.1021/acs.analchem.7b04689
Shi, W., Qin, J., Ye, N. & Lin, B. Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8, 1432–1435 (2008).
pubmed: 18818795
doi: 10.1039/b808753a
Shi, W. et al. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans. Lab Chip 10, 2855–2863 (2010).
pubmed: 20882233
doi: 10.1039/c0lc00256a
Yu, Z. et al. Droplet-based microfluidic analysis and screening of single plant cells. PLoS One 13, 1–15 (2018).
Aubry, G., Zhan, M. & Lu, H. Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans. Lab Chip 15, 1424–1431 (2015).
pubmed: 25622546
pmcid: 4348330
doi: 10.1039/C4LC01384K
Mani, K. & Chen, C. Y. A non-invasive acoustic-trapping of zebrafish microfluidics. Biomicrofluidics 15, 014109 (2021).
Mani, K., Chien, T. C. C., Panigrahi, B. & Chen, C. Y. Manipulation of zebrafish’s orientation using artificial cilia in a microchannel with actively adaptive wall design. Sci. Rep. 6, 1–10 (2016).
doi: 10.1038/srep36385
Panigrahi, B. & Chen, C. Y. Microfluidic transportation control of larval zebrafish through optomotor regulations under a pressure-driven flow. Micromachines 10, 880 (2019).
Mani, K., Hsieh, Y. C., Panigrahi, B. & Chen, C. Y. A noninvasive light driven technique integrated microfluidics for zebrafish larvae transportation. Biomicrofluidics 12, 021101 (2018).
Lockery, S. R. et al. Artificial dirt: microfluidic substrates for nematode neurobiology and behavior. J. Neurophysiol. 99, 3136–3143 (2008).
pubmed: 18337372
doi: 10.1152/jn.91327.2007
Albrecht, D. R. & Bargmann, C. I. High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments. Nat. Methods 8, 599–606 (2011).
pubmed: 21666667
pmcid: 3152576
doi: 10.1038/nmeth.1630
Vanwalleghem, G., Schuster, K., Taylor, M. A., Favre-Bulle, I. A. & Scott, E. K. Brain-wide mapping of water flow perception in zebrafish. J. Neurosci. 40, 4130–4144 (2020).
pubmed: 32277044
pmcid: 7244201
doi: 10.1523/JNEUROSCI.0049-20.2020
Butler, J. M. & Maruska, K. P. The mechanosensory lateral line is used to assess opponents and mediate aggressive behaviors during territorial interactions in an African cichlid fish. J. Exp. Biol. 218, 3284–3294 (2015).
pubmed: 26491195
doi: 10.1242/jeb.125948
Ali, R., Mogdans, J. & Bleckmann, H. Responses of medullary lateral line units of the goldfish, Carassius auratus, to amplitude-modulated sinusoidal wave stimuli. Int. J. Zool. 2010, 762621 (2010).
Montgomery, J. C., Baker, C. F. & Carton, A. G. The lateral line can mediate rheotaxis in fish. Nature 389, 960–963 (1997).
doi: 10.1038/40135
Nichols, A. L. A., Eichler, T., Latham, R. & Zimmer, M. A global brain state underlies C. elegans sleep behavior. Science 356, 1247–1256 (2017).
doi: 10.1126/science.aam6851
Schrödel, T., Prevedel, R., Aumayr, K., Zimmer, M. & Vaziri, A. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10, 1013–1020 (2013).
pubmed: 24013820
doi: 10.1038/nmeth.2637
Lawler, D. E. et al. Sleep analysis in adult C. elegans reveals state-dependent alteration of neural and behavioral responses. J. Neurosci. 41, 1892–1907 (2021).
pubmed: 33446520
pmcid: 7939084
doi: 10.1523/JNEUROSCI.1701-20.2020
Lagoy, R. C. & Albrecht, D. R. Microfluidic devices for behavioral analysis, microscopy, and neuronal imaging in Caenorhabditis elegans. Methods Mol. Biol. 1327, 159–179 (2015).
pubmed: 26423974
doi: 10.1007/978-1-4939-2842-2_12
Zimmer, M. et al. Article neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron 61, 865–879 (2009).
pubmed: 19323996
pmcid: 2760494
doi: 10.1016/j.neuron.2009.02.013
Merle, T. & Farge, E. Trans-scale mechanotransductive cascade of biochemical and biomechanical patterning in embryonic development: the light side of the force. Curr. Opin. Cell Biol. 55, 111–118 (2018).
pubmed: 30077057
doi: 10.1016/j.ceb.2018.07.003
He, L., Si, G., Huang, J., Samuel, A. D. T. & Perrimon, N. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 555, 103–106 (2018).
pubmed: 29414942
pmcid: 6101000
doi: 10.1038/nature25744
Holle, A. W. et al. Cell-extracellular matrix mechanobiology: forceful tools and emerging needs for basic and translational research. Nano Lett. 18, 1–8 (2018).
pubmed: 29178811
doi: 10.1021/acs.nanolett.7b04982
Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000).
pubmed: 10744543
doi: 10.1126/science.287.5461.2229
Desprat, N., Supatto, W., Pouille, P. A., Beaurepaire, E. & Farge, E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 15, 470–477 (2008).
pubmed: 18804441
doi: 10.1016/j.devcel.2008.07.009
Farge, E. Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003).
pubmed: 12932320
doi: 10.1016/S0960-9822(03)00576-1
Nekimken, A. L. et al. Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap. Lab Chip 17, 1116–1127 (2017).
pubmed: 28207921
pmcid: 5360562
doi: 10.1039/C6LC01165A
Cho, Y. et al. Automated and controlled mechanical stimulation and functional imaging: in vivo in C. elegans. Lab Chip 17, 2609–2618 (2017).
pubmed: 28660945
pmcid: 5575793
doi: 10.1039/C7LC00465F
Shorr, A. Z., Sönmez, U. M., Minden, J. S. & Leduc, P. R. High-throughput mechanotransduction in: Drosophila embryos with mesofluidics. Lab Chip 19, 1141–1152 (2019).
pubmed: 30778467
doi: 10.1039/C8LC01055B
Trcek, T., Lionnet, T., Shroff, H. & Lehmann, R. mRNA quantification using single-molecule FISH in Drosophila embryos. Nat. Protoc. 12, 1326–1347 (2017).
pubmed: 28594816
doi: 10.1038/nprot.2017.030
Charles, S., Aubry, G., Chou, H. T., Paaby, A. B. & Lu, H. High-temporal-resolution smFISH method for gene expression studies in Caenorhabditis elegans embryos. Anal. Chem. 93, 1369–1376 (2021).
pubmed: 33355449
doi: 10.1021/acs.analchem.0c02966
Zappe, S., Fish, M., Scott, M. P. & Solgaard, O. Automated MEMS-based Drosophila embryo injection system for high-throughput RNAi screens. Lab Chip 6, 1012–1019 (2006).
pubmed: 16874371
doi: 10.1039/b600238b
Rouse, T., Aubry, G., Cho, Y., Zimmer, M. & Lu, H. A programmable platform for sub-second multichemical dynamic stimulation and neuronal functional imaging in: C. elegans. Lab Chip 18, 505–513 (2018).
pubmed: 29313542
pmcid: 5790607
doi: 10.1039/C7LC01116D
Chokshi, T. V., Bazopoulou, D. & Chronis, N. An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans. Lab Chip 10, 2758–2763 (2010).
pubmed: 20820480
doi: 10.1039/c004658b
Ghaemi et al. A microfluidic microinjector for toxicological and developmental studies in: Drosophila embryos. Lab Chip 17, 3898–3908 (2017).
pubmed: 29058002
doi: 10.1039/C7LC00537G
Kim, Y. T., Joshi, S. D., Messner, W. C., LeDuc, P. R. & Davidson, L. A. Detection of dynamic spatiotemporal response to periodic chemical stimulation in a Xenopus embryonic tissue. PLoS One 6, e14624 (2011).
Chung, K. et al. Microfluidic chamber arrays for whole-organism behavior-based chemical screening. Lab Chip 11, 3689–3697 (2011).
pubmed: 21935539
pmcid: 3924777
doi: 10.1039/c1lc20400a
Lockery, S. R. et al. A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans. Lab Chip 12, 2211–2220 (2012).
pubmed: 22588281
pmcid: 3372093
doi: 10.1039/c2lc00001f
Kim, Y. T. et al. Mechanochemcal actuators of embryonic epithelial contractility. Proc. Natl Acad. Sci. USA. 111, 14366–14371 (2014).
pubmed: 25246549
pmcid: 4210000
doi: 10.1073/pnas.1405209111
Apostolopoulou, A. A., Widmann, A., Rohwedder, A., Pfitzenmaier, J. E. & Thum, A. S. Appetitive associative olfactory learning in Drosophila larvae. J. Vis. Exp. 4334 https://doi.org/10.3791/4334 (2013).
Si, G. et al. Structured odorant response patterns across a complete olfactory receptor. Neuron Popul. Neuron 101, 950–962.e7 (2019).
Zabihihesari, A., Hilliker, A. J. & Rezai, P. Localized microinjection of intact: Drosophila melanogaster larva to investigate the effect of serotonin on heart rate. Lab Chip 20, 343–355 (2020).
pubmed: 31828261
doi: 10.1039/C9LC00963A
Ardeshiri, R., Hosseini, L., Amini, N. & Rezai, P. Cardiac screening of intact Drosophila melanogaster larvae under exposure to aqueous and gaseous toxins in a microfluidic device. RSC Adv. 6, 65714–65724 (2016).
doi: 10.1039/C6RA14159E
Choma, M. A., Suter, M. J., Vakoc, B. J., Bouma, B. E. & Tearney, G. J. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems. DMM Dis. Model. Mech. 4, 411–420 (2011).
pubmed: 21183476
doi: 10.1242/dmm.005231
Malloy, C. A., Ritter, K., Robinson, J., English, C. & Cooper, R. L. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 186, 45–57 (2016).
doi: 10.1007/s00360-015-0934-4
Barrionuevo, W. R. & Burggren, W. W. O2 consumption and heart rate in developing zebrafish (Danio rerio): Influence of temperature and ambient O2. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 276, 505–513 (1999).
doi: 10.1152/ajpregu.1999.276.2.R505
Gibert, P. & De Jong, G. Temperature dependence of development rate and adult size in Drosophila species: biophysical parameters. J. Evol. Biol. 14, 267–276 (2001).
doi: 10.1046/j.1420-9101.2001.00272.x
Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H. & Ismagilov, R. F. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434, 1134–1138 (2005).
pubmed: 15858575
pmcid: 2656922
doi: 10.1038/nature03509
Bai, Z. et al. Real-time observation of perturbation of a Drosophila embryo’s early cleavage cycles with microfluidics. Anal. Chim. Acta 982, 131–137 (2017).
pubmed: 28734352
doi: 10.1016/j.aca.2017.05.024
Terry, E. et al. Early C. elegans embryos modulate cell division timing to compensate for, and survive, the discordant conditions of a severe temperature gradient. Preprint at bioRxiv. https://doi.org/10.1101/2020.06.02.128694 (2020).
Zhou, J., Khodakov, D. A., Ellis, A. V. & Voelcker, N. H. Surface modification for PDMS-based microfluidic devices. Electrophoresis 33, 89–104 (2012).
pubmed: 22128067
doi: 10.1002/elps.201100482
Levario, T. J., Zhan, M., Lim, B., Shvartsman, S. Y. & Lu, H. Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nat. Protoc. 8, 721–736 (2013).
pubmed: 23493069
doi: 10.1038/nprot.2013.034
Lochovsky, C., Yasotharan, S. & Günther, A. Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices. Lab Chip 12, 595–601 (2012).
pubmed: 22159026
doi: 10.1039/C1LC20817A
Shaegh, S. A. M. et al. Plug-and-play microvalve and micropump for rapid integration with microfluidic chips. Microfluid. Nanofluidics 19, 557–564 (2015).
doi: 10.1007/s10404-015-1582-4
Byun, C. K., Abi-Samra, K., Cho, Y. K. & Takayama, S. Pumps for microfluidic cell culture. Electrophoresis 35, 245–257 (2014).
pubmed: 23893649
doi: 10.1002/elps.201300205
Placet, V. & Delobelle, P. Mechanical properties of bulk polydimethylsiloxane for microfluidics over a large range of frequencies and aging times. J. Micromech. Microeng. 25, 035009 (2015).
Cho, Y., Oakland, D. N., Lee, S. A., Schafer, W. R. & Lu, H. On-chip functional neuroimaging with mechanical stimulation in: Caenorhabditis elegans larvae for studying development and neural circuits. Lab Chip 18, 601–609 (2018).
pubmed: 29340386
pmcid: 5885276
doi: 10.1039/C7LC01201B
Lucchetta, E. M., Munson, M. S. & Ismagilov, R. F. Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device. Lab Chip 6, 185–190 (2006).
pubmed: 16450026
doi: 10.1039/b516119c
Mukhopadhyay, R. When PDMS isn’t the best. Am. Chem. Soc. 79, 3249–3253 (2007).
Toepke, M. W. & Beebe, D. J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6, 1484–1486 (2006).
pubmed: 17203151
doi: 10.1039/b612140c
Nge, P. N., Rogers, C. I. & Woolley, A. T. Advances in micro fluidic materials, functions, integration, and applications. Chem Rev. 113, 2550–2583 (2013).
Gale, B. K. et al. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 3, 60 (2018).
Kernan, M., Cowan, D. & Zuker, C. Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron 12, 1195–1206 (1994).
pubmed: 8011334
doi: 10.1016/0896-6273(94)90437-5
Kieserman, E. K., Glotzer, M. & Wallingford, J. B. B. Developmental regulation of central spindle assembly and cytokinesis during vertebrate embryogenesis. Curr. Biol. 18, 116–123 (2008).
pubmed: 18207743
doi: 10.1016/j.cub.2007.12.028
Morrison, A. H., Scheeler, M., Dubuis, J. & T., G. A. Quantifying the bicoid morphogen gradient in living fly embryos. Bone 23, 1–7 (2008).
Hirsinger, E. & Steventon, B. A versatile mounting method for long term imaging of zebrafish development. J. Vis. Exp. 2017, 1–7 (2017).
Bartholomew, N. R., Burdett, J. M., Vandenbrooks, J. M., Quinlan, M. C. & Call, G. B. Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia. Sci. Rep. 5, 1–10 (2015).
doi: 10.1038/srep15298
Sandstrom, D. J. Isoflurane depresses glutamate release by reducing neuronal excitability at the Drosophila neuromuscular junction. J. Physiol. 558, 489–502 (2004).
pubmed: 15169847
pmcid: 1664974
doi: 10.1113/jphysiol.2004.065748
Douglas, R. M. et al. Hypoxia induces major effects on cell cycle kinetics and protein expression in Drosophila melanogaster embryos. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 288, 511–521 (2005).
doi: 10.1152/ajpregu.00520.2004
Brody, J. P. & Yager, P. Low Reynolds number micro-fluidic devices. in Proc. of Solid-state Sensor and Actuator Workshop 105–108 https://doi.org/10.31438/trf.hh1996.25 (1996).
Zhong, L., Hwang, R. Y. & Tracey, W. D. Pickpocket Is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol. 20, 429–434 (2010).
pubmed: 20171104
pmcid: 2995491
doi: 10.1016/j.cub.2009.12.057
Gong, L. et al. Drosophila ventral furrow morphogenesis: a proteomic analysis. Development 131, 643–656 (2004).
pubmed: 14711877
doi: 10.1242/dev.00955
Crane, M. M. et al. Autonomous screening of C. elegans identifies genes implicated in synaptogenesis. Nat. Methods 9, 977–980 (2012).
pubmed: 22902935
pmcid: 3530956
doi: 10.1038/nmeth.2141
Kassner, M. E. et al. New directions in mechanics. Mech. Mater. 37, 231–259 (2005).
doi: 10.1016/j.mechmat.2004.04.009
Nitta, N. et al. Intelligent image-activated cell sorting resource intelligent image-activated cell sorting. Cell 175, 266–276.e13 (2018).
Isozaki, A. et al. Intelligent image-activated cell sorting 2.0. Lab Chip 20, 2263–2273 (2020).
pubmed: 32459276
doi: 10.1039/D0LC00080A
Zhang, B. & Radisic, M. Organ-on-A-chip devices advance to market. Lab Chip 17, 2395–2420 (2017).
pubmed: 28617487
doi: 10.1039/C6LC01554A
San-Miguel, A. et al. Deep phenotyping unveils hidden traits and genetic relations in subtle mutants. Nat. Commun. 7, 12990 (2016).
Mattern, K., Trotha, J. W., von, Erfle, P., Köster, R. W. & Dietzel, A. NeuroExaminer: an all-glass microfluidic device for whole-brain in vivo imaging in zebrafish. Commun. Biol. 3, 2–7 (2020).
doi: 10.1038/s42003-020-1029-7
Kato, S. et al. Global brain dynamics embed the motor command sequence of caenorhabditis elegans. Cell. 163, 656–669 (2015).
Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell. 74, 212–222.e5 (2019).
pubmed: 30795893
doi: 10.1016/j.molcel.2019.01.011
Baris Atakan, H., Alkanat, T., Cornaglia, M., Trouillon, R. & Gijs, M. A. M. Automated phenotyping of Caenorhabditis elegans embryos with a high-throughput-screening microfluidic platform. Microsyst. Nanoeng. 6, 24 (2020).