TMT-Based Quantitative Proteomic Analysis of Intestinal Organoids Infected by
L. monocytogenes
host response
intestinal organoid
proteomic
virulence
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
02 Jun 2022
02 Jun 2022
Historique:
received:
05
05
2022
revised:
27
05
2022
accepted:
30
05
2022
entrez:
10
6
2022
pubmed:
11
6
2022
medline:
14
6
2022
Statut:
epublish
Résumé
L. monocytogenes, consisting of 13 serotypes, is an opportunistic food-borne pathogen that causes different host reactions depending on its serotypes. In this study, highly toxic L. monocytogenes 10403s resulted in more severe infections and lower survival rates. Additionally, to investigate the remodeling of the host proteome by strains exhibiting differential toxicity, the cellular protein responses of intestinal organoids were analyzed using tandem mass tag (TMT) labeling and high-performance liquid chromatography−mass spectrometry. The virulent strain 10403s caused 102 up-regulated and 52 down-regulated proteins, while the low virulent strain M7 caused 188 up-regulated and 25 down-regulated proteins. Based on the analysis of gene ontology (GO) and KEGG databases, the expressions of differential proteins in organoids infected by L. monocytogenes 10403s (virulent strain) or M7 (low virulent strain) were involved in regulating essential processes such as the biological metabolism, the energy metabolism, and immune system processes. The results showed that the immune system process, as the primary host defense response to L. monocytogenes, comprised five pathways, including ECM−receptor interaction, the complement and coagulation cascades, HIF-1, ferroptosis, and NOD-like receptor signaling pathways. As for the L. monocytogenes 10403s vs. M7 group, the expression of differential proteins was involved in two pathways: systemic lupus erythematosus and transcriptional mis-regulation in cancer. All in all, these results revealed that L. monocytogenes strains with different toxicity induced similar biological functions and immune responses while having different regulations on differential proteins in the pathway.
Identifiants
pubmed: 35682909
pii: ijms23116231
doi: 10.3390/ijms23116231
pmc: PMC9181811
pii:
doi:
Substances chimiques
Bacterial Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 32172267
Organisme : Program for Student Innovation through Research and Training
ID : 202110307047
Organisme : National Natural Science Foundation of Jiangsu
ID : BK20221516
Références
Gut Microbes. 2020 Nov 9;12(1):1795492
pubmed: 32795243
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15813-8
pubmed: 19805227
Infect Immun. 2018 Oct 25;86(11):
pubmed: 30104213
Clin Microbiol Rev. 2001 Jul;14(3):584-640
pubmed: 11432815
FEMS Microbiol Rev. 2012 Nov;36(6):1122-80
pubmed: 22537156
Cell Mol Gastroenterol Hepatol. 2019;7(2):357-369
pubmed: 30704984
Trends Microbiol. 2019 May;27(5):408-425
pubmed: 30661918
Microbes Infect. 2007 Aug;9(10):1208-15
pubmed: 17719259
Mol Cell Proteomics. 2018 Aug;17(8):1627-1636
pubmed: 29752379
Front Microbiol. 2022 Jan 20;12:738470
pubmed: 35126322
J Biol Chem. 2011 Jun 3;286(22):19605-16
pubmed: 21487011
Cells. 2019 Nov 26;8(12):
pubmed: 31779172
Proteomics. 2005 Apr;5(6):1544-57
pubmed: 15838904
Cell Res. 2019 May;29(5):347-364
pubmed: 30948788
Appl Environ Microbiol. 2003 Jun;69(6):3640-5
pubmed: 12788773
J Proteomics. 2011 Sep 6;74(10):1906-17
pubmed: 21605710
Microbiology (Reading). 2009 Aug;155(Pt 8):2463-2475
pubmed: 19542009
Sci Rep. 2019 Dec 20;9(1):19587
pubmed: 31862952
Cell Mol Biol Lett. 2019 Jun 06;24:38
pubmed: 31182966
Semin Immunopathol. 2012 Jan;34(1):151-65
pubmed: 21811895
Cell Host Microbe. 2018 Apr 11;23(4):470-484.e7
pubmed: 29606495
Front Cell Infect Microbiol. 2014 Feb 05;4:9
pubmed: 24551601
Int J Immunopathol Pharmacol. 2003 May-Aug;16(2):119-27
pubmed: 12797902
Appl Environ Microbiol. 2008 Sep;74(17):5563-7
pubmed: 18586963
J Vet Med Sci. 2017 Jun 10;79(6):962-969
pubmed: 28420823
Int Immunol. 2019 Feb 6;31(1):13-21
pubmed: 30281080
Mucosal Immunol. 2015 Mar;8(2):352-61
pubmed: 25118165
BMC Microbiol. 2012 Dec 26;12:304
pubmed: 23267677
J Food Prot. 2014 Aug;77(8):1298-307
pubmed: 25198590
Front Vet Sci. 2020 Feb 26;7:88
pubmed: 32161763
Microbiol Resour Announc. 2018 Oct 4;7(13):
pubmed: 30533688
Food Res Int. 2017 Oct;100(Pt 1):631-639
pubmed: 28873731
Curr Opin Microbiol. 2022 Apr;66:11-20
pubmed: 34923331
PLoS One. 2018 Jun 7;13(6):e0198584
pubmed: 29879172
Appl Environ Microbiol. 2009 Jan;75(2):366-73
pubmed: 19028911
Expert Rev Proteomics. 2015 Jun;12(3):235-53
pubmed: 25955281
J Inflamm Res. 2018 Feb 12;11:49-60
pubmed: 29483781
FEMS Microbiol Lett. 2015 Mar;362(6):
pubmed: 25673285
Nat Immunol. 2006 Dec;7(12):1250-7
pubmed: 17110941
Science. 2005 Feb 4;307(5710):731-4
pubmed: 15692051
Nat Commun. 2019 Jun 6;10(1):2488
pubmed: 31171794
Cell Microbiol. 2009 May;11(5):703-9
pubmed: 19191786
Int J Med Microbiol. 2011 Feb;301(2):79-96
pubmed: 20708964