X-ray Image Enhancement Based on Nonsubsampled Shearlet Transform and Gradient Domain Guided Filtering.

X-ray image adaptive gamma correction with weighting distribution gradient-domain guided filtering image enhancement non-subsampled shearlet transform

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
27 May 2022
Historique:
received: 22 04 2022
revised: 16 05 2022
accepted: 25 05 2022
entrez: 10 6 2022
pubmed: 11 6 2022
medline: 11 6 2022
Statut: epublish

Résumé

In this paper, we propose an image enhancement algorithm combining non-subsampled shearlet transform and gradient-domain guided filtering to address the problems of low resolution, noise amplification, missing details, and weak edge gradient retention in the X-ray image enhancement process. First, we decompose histogram equalization and nonsubsampled shearlet transform to the original image. We get a low-frequency sub-band and several high-frequency sub-bands. Adaptive gamma correction with weighting distribution is used for the low-frequency sub-band to highlight image contour information and improve the overall contrast of the image. The gradient-domain guided filtering is conducted for the high-frequency sub-bands to suppress image noise and highlight detail and edge information. Finally, we reconstruct all the effectively processed sub-bands by the inverse non-subsampled shearlet transform and obtain the final enhanced image. The experimental results show that the proposed algorithm has good results in X-ray image enhancement, and its objective index also has evident advantages over some classical algorithms.

Identifiants

pubmed: 35684702
pii: s22114074
doi: 10.3390/s22114074
pmc: PMC9185538
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : The Scientific research project of the Tianjin Education Commission
ID : No. 2020KJ077

Références

Sensors (Basel). 2021 Mar 04;21(5):
pubmed: 33806308
Diagnostics (Basel). 2022 Jan 21;12(2):
pubmed: 35204358
Neural Comput. 2016 Jun;28(6):1072-100
pubmed: 26942747
IEEE Trans Image Process. 2003;12(1):16-28
pubmed: 18237876
IEEE Trans Pattern Anal Mach Intell. 2013 Jun;35(6):1397-409
pubmed: 23599054
IEEE Trans Image Process. 2015 Nov;24(11):4528-39
pubmed: 26285153
IEEE Trans Image Process. 2006 Oct;15(10):3089-101
pubmed: 17022272
IEEE Trans Image Process. 2013 Mar;22(3):1032-41
pubmed: 23144035
IEEE Trans Image Process. 2010 May;19(5):1166-80
pubmed: 20106737
IEEE Trans Image Process. 2003;12(6):706-17
pubmed: 18237946
Rev Sci Instrum. 2017 May;88(5):054701
pubmed: 28571470
IEEE Trans Image Process. 2015 Jan;24(1):120-9
pubmed: 25415986
IEEE Trans Inf Technol Biomed. 2011 Nov;15(6):918-28
pubmed: 21843996

Auteurs

Tao Zhao (T)

School of Mechanical Engineering, Hebei University of Technology, Tianjin 300131, China.
Department of Mechanical Engineering, Zhonghuan Information College Tianjin University of Technology, Tianjin 300380, China.

Si-Xiang Zhang (SX)

School of Mechanical Engineering, Hebei University of Technology, Tianjin 300131, China.

Classifications MeSH