Dentate Granule Cells Are Hyperexcitable in the TgF344-AD Rat Model of Alzheimer's Disease.

Alzheimer's disease TgF344-AD rat dentate dentate granule cell hyperexcitability

Journal

Frontiers in synaptic neuroscience
ISSN: 1663-3563
Titre abrégé: Front Synaptic Neurosci
Pays: Switzerland
ID NLM: 101548972

Informations de publication

Date de publication:
2022
Historique:
received: 01 12 2021
accepted: 05 04 2022
entrez: 10 6 2022
pubmed: 11 6 2022
medline: 11 6 2022
Statut: epublish

Résumé

The dentate gyrus is both a critical gatekeeper for hippocampal signal processing and one of the first brain regions to become dysfunctional in Alzheimer's disease (AD). Accordingly, the appropriate balance of excitation and inhibition through the dentate is a compelling target for mechanistic investigation and therapeutic intervention in early AD. Previously, we reported an increased long-term potentiation (LTP) magnitude at medial perforant path-dentate granule cell (MPP-DGC) synapses in slices from both male and acutely ovariectomized female TgF344-AD rats compared with wild type (Wt) as early as 6 months of age that is accompanied by an increase in steady-state postsynaptic depolarization during the high-frequency stimulation used to induce plasticity. Subsequently, we found that heightened function of β-adrenergic receptors (β-ARs) drives the increase in the LTP magnitude, but the increase in steady-state depolarization was only partially due to β-AR activation. As we previously reported no detectable difference in spine density or presynaptic release probability, we entertained the possibility that DGCs themselves might have modified passive or active membrane properties, which may contribute to the significant increase in charge transfer during high-frequency stimulation. Using brain slice electrophysiology from 6-month-old female rats acutely ovariectomized to eliminate variability due to fluctuating plasma estradiol, we found significant changes in passive membrane properties and active membrane properties leading to increased DGC excitability in TgF344-AD rats. Specifically, TgF344-AD DGCs have an increased input resistance and decreased rheobase, decreased sag, and increased action potential (AP) spike accommodation. Importantly, we found that for the same amount of depolarizing current injection, DGCs from TgF344-AD compared with Wt rats have a larger magnitude voltage response, which was accompanied by a decreased delay to fire the first action potential, indicating TgF344-AD DGCs membranes are more excitable. Taken together, DGCs in TgF344-AD rats are more excitable, which likely contributes to the heightened depolarization during high-frequency synaptic activation.

Identifiants

pubmed: 35685246
doi: 10.3389/fnsyn.2022.826601
pmc: PMC9171068
doi:

Types de publication

Journal Article

Langues

eng

Pagination

826601

Subventions

Organisme : NIA NIH HHS
ID : F31 AG054087
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG066489
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG053067
Pays : United States

Informations de copyright

Copyright © 2022 Smith, Goodman and McMahon.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

J Neurosci. 2006 Aug 16;26(33):8517-22
pubmed: 16914677
J Neurosci. 2013 Apr 17;33(16):7020-6
pubmed: 23595759
Front Cell Neurosci. 2015 Oct 14;9:372
pubmed: 26528126
Prog Brain Res. 1990;83:161-87
pubmed: 2203097
Neuron. 2007 Sep 6;55(5):697-711
pubmed: 17785178
Neurobiol Aging. 2015 Feb;36(2):886-900
pubmed: 25541422
Endocrinology. 2007 May;148(5):1963-7
pubmed: 17317772
J Neuropathol Exp Neurol. 2011 Nov;70(11):960-9
pubmed: 22002422
Curr Pharm Des. 2016;22(10):1295-304
pubmed: 26972288
Science. 2007 May 4;316(5825):750-4
pubmed: 17478722
Psychoneuroendocrinology. 2009 Dec;34 Suppl 1:S130-42
pubmed: 19596521
Methods Mol Biol. 2014;1183:221-42
pubmed: 25023312
Lancet Neurol. 2012 Dec;11(12):1048-56
pubmed: 23137948
J Neurosci. 2013 Apr 10;33(15):6245-56
pubmed: 23575824
J Neurophysiol. 2015 Mar 15;113(6):1712-26
pubmed: 25540218
Nat Neurosci. 2010 Feb;13(2):190-6
pubmed: 20037574
Hippocampus. 2013 Jan;23(1):108-15
pubmed: 22965452
Epilepsia. 2012 Dec;53 Suppl 9:32-40
pubmed: 23216577
Neuron. 2014 Dec 3;84(5):1023-33
pubmed: 25456500
Nat Neurosci. 2002 Aug;5(8):767-74
pubmed: 12118259
Invest Ophthalmol Vis Sci. 2014 Jan 29;55(1):523-34
pubmed: 24398104
Cell Rep. 2015 May 12;11(6):859-865
pubmed: 25937280
Nat Rev Neurosci. 2010 May;11(5):301-15
pubmed: 20389305
Biol Psychiatry. 2018 Oct 1;84(7):488-498
pubmed: 29246437
Philos Trans R Soc Lond B Biol Sci. 2016 Aug 5;371(1700):
pubmed: 27377723
Brain. 2017 Nov 1;140(11):3023-3038
pubmed: 29053824
Nature. 1997 Jun 26;387(6636):869-75
pubmed: 9202119
Neurobiol Aging. 2018 Jan;61:169-176
pubmed: 29107184
Nat Neurosci. 2004 Feb;7(2):126-35
pubmed: 14730307
Mol Brain. 2021 Mar 30;14(1):62
pubmed: 33785038
J Neurosci. 2018 Feb 14;38(7):1711-1724
pubmed: 29335356
Nat Rev Neurosci. 2016 Dec;17(12):777-792
pubmed: 27829687
J Neurosci. 2005 Aug 24;25(34):7780-91
pubmed: 16120779
J Neurosci. 2021 Jun 30;41(26):5747-5761
pubmed: 33952633
J Neurochem. 2018 Mar;144(5):669-679
pubmed: 28777881
Cell. 2012 Apr 27;149(3):708-21
pubmed: 22541439
Alzheimers Res Ther. 2018 Feb 07;10(1):16
pubmed: 29415770
Mol Neurodegener. 2013 Oct 25;8:37
pubmed: 24161192
Ann Neurol. 2004 Jul;56(1):27-35
pubmed: 15236399
PLoS One. 2013 May 17;8(5):e64318
pubmed: 23691195
J Comp Neurol. 1993 Oct 8;336(2):293-306
pubmed: 8245220
Anat Embryol (Berl). 1979;157(3):243-53
pubmed: 525817
Horm Behav. 1998 Oct;34(2):140-8
pubmed: 9799624
Ann Neurol. 2010 Dec;68(6):865-75
pubmed: 21194156
Nat Neurosci. 2016 Aug;19(8):1085-92
pubmed: 27322420
Neurobiol Aging. 2011 Aug;32(8):1452-65
pubmed: 19833411
Nat Commun. 2020 May 26;11(1):2612
pubmed: 32457389
J Neurosci. 2009 Mar 18;29(11):3453-62
pubmed: 19295151
Front Cell Neurosci. 2012 Oct 25;6:47
pubmed: 23112761
Neurobiol Dis. 2018 Feb;110:166-179
pubmed: 29199135
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19543-8
pubmed: 20974957
Neurobiol Dis. 2008 Nov;32(2):309-18
pubmed: 18721884
Neurobiol Aging. 2011 Nov;32(11):2109.e1-14
pubmed: 21794952
J Physiol. 1984 Sep;354:319-31
pubmed: 6434729
Eur J Neurosci. 2005 Nov;22(10):2669-74
pubmed: 16307610
Sci Rep. 2017 Apr 12;7:46427
pubmed: 28401931

Auteurs

Lindsey A Smith (LA)

Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.

Anthoni M Goodman (AM)

Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.

Lori L McMahon (LL)

Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.

Classifications MeSH