Machine learning for contour classification in TG-263 noncompliant databases.
image classification
machine learning
standardization
Journal
Journal of applied clinical medical physics
ISSN: 1526-9914
Titre abrégé: J Appl Clin Med Phys
Pays: United States
ID NLM: 101089176
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
revised:
16
03
2022
received:
01
09
2021
accepted:
19
04
2022
pubmed:
11
6
2022
medline:
28
9
2022
entrez:
10
6
2022
Statut:
ppublish
Résumé
A large volume of medical data are labeled using nonstandardized nomenclature. Although efforts have been made by the American Association of Physicists in Medicine (AAPM) to standardize nomenclature through Task Group 263 (TG-263), there remain noncompliant databases. This work aims to create an algorithm that can analyze anatomical contours in patients with head and neck cancer and classify them into TG-263 compliant nomenclature. To create an accurate algorithm capable of such classification, a combined approaching using both binary images of individual slices of anatomical contours themselves, as well as center of mass coordinates of the structures are input into a neural network. The center of mass coordinates were scaled using two normalization schemes, a simple linear normalization scheme agnostic of the patient anatomy, and an anatomical normalization scheme dependent on patient anatomy. The results of all of the individual slice classifications are then aggregated into a single classification by means of a voting algorithm. The total classification accuracy of the final algorithms was 97.6% mean accuracy per class for nonanatomically normalization scheme, and 97.9% mean accuracy per class for anatomically normalization scheme. The total accuracy was 99.0% (13 errors in 1302 structures) for the nonanatomically normalization scheme, and 98.3% (22 errors in 1302 structures) for the anatomically normalization scheme.
Identifiants
pubmed: 35686988
doi: 10.1002/acm2.13662
pmc: PMC9512347
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13662Informations de copyright
© 2022 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.
Références
BJR Open. 2019 Jul 04;1(1):20190021
pubmed: 33178948
J Digit Imaging. 2013 Dec;26(6):1045-57
pubmed: 23884657
Radiology. 2020 Apr;295(1):4-15
pubmed: 32068507
Med Phys. 2015 Feb;42(2):1048-59
pubmed: 25652517
J Appl Clin Med Phys. 2018 Sep;19(5):335-346
pubmed: 29959816
Nature. 2020 Sep;585(7825):357-362
pubmed: 32939066
Phys Med Biol. 2015 Jul 07;60(13):5199-209
pubmed: 26083863
Int J Radiat Oncol Biol Phys. 2018 Mar 15;100(4):1057-1066
pubmed: 29485047
Nat Rev Clin Oncol. 2019 Nov;16(11):703-715
pubmed: 31399699
IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3523-3542
pubmed: 33596172
Br J Radiol. 2019 Aug;92(1100):20190001
pubmed: 31112393
J Appl Clin Med Phys. 2022 Sep;23(9):e13662
pubmed: 35686988
IEEE Trans Med Imaging. 2013 Jun;32(6):1043-57
pubmed: 23475352
Radiother Oncol. 2017 Dec;125(3):392-397
pubmed: 29162279