Clinicopathologic spectrum of myeloid neoplasms with concurrent myeloproliferative neoplasm driver mutations and SRSF2 mutations.


Journal

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
ISSN: 1530-0285
Titre abrégé: Mod Pathol
Pays: United States
ID NLM: 8806605

Informations de publication

Date de publication:
11 2022
Historique:
received: 24 03 2022
accepted: 24 05 2022
revised: 23 05 2022
pubmed: 12 6 2022
medline: 28 10 2022
entrez: 11 6 2022
Statut: ppublish

Résumé

Myeloproliferative neoplasms (MPNs) are frequently associated with classic driver mutations involving JAK2, MPL or CALR. SRSF2 is among the most frequently mutated splicing genes in myeloid neoplasms and SRSF2 mutations are known to confer a poor prognosis in patients with MPNs. In this study, we sought to evaluate the clinicopathologic spectrum of myeloid neoplasms harboring concurrent MPN-driver mutations and SRSF2 mutations. The study cohort included 27 patients, 22 (82%) men and five (19%) women, with a median age of 71 years (range, 51-84). These patients presented commonly with organomegaly (n = 15; 56%), monocytosis (n = 13; 48%), morphologic dysplasia (n = 11; 41%), megakaryocytic hyperplasia and/or clustering (n = 10; 37%) and bone marrow fibrosis >MF-1 (17/22; 77%). About one third of patients either initially presented with acute myeloid leukemia (AML) or eventually progressed to AML. Eighteen (68%) patients had a dominant clone with SRSF2 mutation and nine (33%) patients had a dominant clone with a classic MPN-associated driver mutation. Our data suggest that the presence of an SRSF2 mutation preceding the acquisition of a MPN driver mutations is not a disease-defining alteration nor is it restricted to any specific disease entity within the spectrum of myeloid neoplasms. In summary, patients with myeloid neoplasms associated with concurrent SRSF2 and classic MPN driver mutations have clinical and morphologic features close to that of classic MPNs often with frequent dysplasia and monocytosis.

Identifiants

pubmed: 35690645
doi: 10.1038/s41379-022-01118-3
pii: S0893-3952(22)00234-4
doi:

Substances chimiques

Janus Kinase 2 EC 2.7.10.2
RNA-Binding Proteins 0
SRSF2 protein, human 147153-65-9
Serine-Arginine Splicing Factors 170974-22-8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1677-1683

Informations de copyright

© 2022. The Author(s), under exclusive licence to United States & Canadian Academy of Pathology.

Références

Kvasnicka, H. M., Thiele, J., Orazi, A., Horny, H. P. & Bain, B. J. Myeloproliferative neoplasm, unclassifiable. In: S.H. Swerdlow et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 57–59 (IARC Lyon, 2017).
Orazi, A., Bennett, J. M., Bain, B. J., Baumann, I., Thiele, J., Bueso-Ramos, C. et al. Myelodysplastic I myeloproliferative neoplasm, unclassifiable. In: S.H. Swerdlow et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 95–96 (IARC: Lyon, 2017).
Grinfeld, J., Nangalia, J., Baxter, E. J., Wedge, D. C., Angelopoulos, N., Cantrill, R. et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. New England Journal of Medicine 379, 1416–1430 (2018).
Papaemmanuil, E., Gerstung, M., Malcovati, L., Tauro, S., Gundem, G., Van Loo, P. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616–3627; quiz 3699 (2013).
Yoshida, K., Sanada, M., Shiraishi, Y., Nowak, D., Nagata, Y., Yamamoto, R. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).
Kim, E., Ilagan, J. O., Liang, Y., Daubner, G. M., Lee, S. C., Ramakrishnan, A. et al. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell 27, 617–630 (2015).
Patnaik, M. M., Lasho, T. L., Finke, C. M., Hanson, C. A., Hodnefield, J. M., Knudson, R. A. et al. Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: prevalence, clinical correlates, and prognostic relevance. Am J Hematol 88, 201–206 (2013).
Makishima, H., Visconte, V., Sakaguchi, H., Jankowska, A. M., Abu Kar, S., Jerez, A. et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 119, 3203–3210 (2012).
Wu, S. J., Kuo, Y. Y., Hou, H. A., Li, L. Y., Tseng, M. H., Huang, C. F. et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood 120, 3106–3111 (2012).
Federmann, B., Abele, M., Rosero Cuesta, D. S., Vogel, W., Boiocchi, L., Kanz, L. et al. The detection of SRSF2 mutations in routinely processed bone marrow biopsies is useful in the diagnosis of chronic myelomonocytic leukemia. Hum Pathol 45, 2471–2479 (2014).
Vannucchi, A. M., Lasho, T. L., Guglielmelli, P., Biamonte, F., Pardanani, A., Pereira, A. et al. Mutations and prognosis in primary myelofibrosis. Leukemia 27, 1861–1869 (2013).
Zhang, S. J., Rampal, R., Manshouri, T., Patel, J., Mensah, N., Kayserian, A. et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 119, 4480–4485 (2012).
Chapman, J., Geyer, J. T., Khanlari, M., Moul, A., Casas, C., Connor, S. T. et al. Myeloid neoplasms with features intermediate between primary myelofibrosis and chronic myelomonocytic leukemia. Mod Pathol 31, 429–441 (2018).
Gur, H. D., Loghavi, S., Garcia-Manero, G., Routbort, M., Kanagal-Shamanna, R., Quesada, A. et al. Chronic Myelomonocytic Leukemia With Fibrosis Is a Distinct Disease Subset With Myeloproliferative Features and Frequent JAK2 p.V617F Mutations. Am J Surg Pathol 42, 799–806 (2018).
Hu, Z., Ramos, C. E. B., Medeiros, L. J., Zhao, C., Yin, C. C., Li, S. et al. Utility of JAK2 V617F allelic burden in distinguishing chronic myelomonocytic Leukemia from Primary myelofibrosis with monocytosis. Hum Pathol 85, 290–298 (2019).
WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. (IARC Lyon, 2017).
Della Porta, M. G., Travaglino, E., Boveri, E., Ponzoni, M., Malcovati, L., Papaemmanuil, E. et al. Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia 29, 66–75 (2015).
Thiele, J., Kvasnicka, H. M., Facchetti, F., Franco, V., van Der Walt, J. & Orazi, A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 90, 1128–1132 (2005).
Khoury, J. D., Sen, F., Abruzzo, L. V., Hayes, K., Glassman, A. & Medeiros, L. J. Cytogenetic findings in blastoid mantle cell lymphoma. Hum Pathol 34, 1022–1029 (2003).
McGowan-Jordan J, S. A., Schmid M. ISCN 2016: An International System for Human Cytogenomic Nomenclature (2016). (Basel: S. Karger Publishing, 2016).
Ok, C. Y., Loghavi, S., Sui, D., Wei, P., Kanagal-Shamanna, R., Yin, C. C. et al. Persistent IDH1/2 mutations in remission can predict relapse in patients with acute myeloid leukemia. Haematologica 104, 305–311 (2019).
Lee, S. C., North, K., Kim, E., Jang, E., Obeng, E., Lu, S. X. et al. Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell 34, 225-241 e228 (2018).
Taylor, J., Mi, X., North, K. D., Binder, M., Penson, A., Lasho, T. L. et al. Single-cell genomics reveals the genetic and molecular bases for escape from mutational epistasis in myeloid neoplasms. Blood https://doi.org/10.1182/blood.2020006868 (2020).

Auteurs

Mehrnoosh Tashakori (M)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Joseph D Khoury (JD)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Mark J Routbort (MJ)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Keyur P Patel (KP)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Sa A Wang (SA)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Chi Young Ok (CY)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Siba El-Hussein (S)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Rashmi Kanagal-Shamanna (R)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Rajyalakshmi Luthra (R)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Shimin Hu (S)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Pei Lin (P)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Naveen Pemmaraju (N)

Department of Leukemia, UT MD Anderson Cancer Center, Houston, TX, USA.

Prithviraj Bose (P)

Department of Leukemia, UT MD Anderson Cancer Center, Houston, TX, USA.

Srdan Verstovsek (S)

Department of Leukemia, UT MD Anderson Cancer Center, Houston, TX, USA.

Carlos E Bueso-Ramos (CE)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

L Jeffrey Medeiros (LJ)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Sanam Loghavi (S)

Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA. SLoghavi@mdanderson.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH