Linking individual differences in human primary visual cortex to contrast sensitivity around the visual field.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
13 06 2022
13 06 2022
Historique:
received:
09
11
2021
accepted:
06
05
2022
entrez:
13
6
2022
pubmed:
14
6
2022
medline:
16
6
2022
Statut:
epublish
Résumé
A central question in neuroscience is how the organization of cortical maps relates to perception, for which human primary visual cortex (V1) is an ideal model system. V1 nonuniformly samples the retinal image, with greater cortical magnification (surface area per degree of visual field) at the fovea than periphery and at the horizontal than vertical meridian. Moreover, the size and cortical magnification of V1 varies greatly across individuals. Here, we used fMRI and psychophysics in the same observers to quantify individual differences in V1 cortical magnification and contrast sensitivity at the four polar angle meridians. Across observers, the overall size of V1 and localized cortical magnification positively correlated with contrast sensitivity. Moreover, greater cortical magnification and higher contrast sensitivity at the horizontal than the vertical meridian were strongly correlated. These data reveal a link between cortical anatomy and visual perception at the level of individual observer and stimulus location.
Identifiants
pubmed: 35697680
doi: 10.1038/s41467-022-31041-9
pii: 10.1038/s41467-022-31041-9
pmc: PMC9192713
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
3309Subventions
Organisme : NEI NIH HHS
ID : R01 EY027401
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH111417
Pays : United States
Organisme : NEI NIH HHS
ID : P30 EY013079
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Andrews, T. J., Halpern, S. D. & Purves, D. Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J. Neurosci. 17, 2859–2868 (1997).
Benson, N. C. et al. Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers. bioRxiv (2021).
Duncan, R. O. & Boynton, G. M. Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38, 659–671 (2003).
pubmed: 12765616
doi: 10.1016/S0896-6273(03)00265-4
Dougherty, R. F. et al. Visual field representations and locations of visual areas v1/2/3 in human visual cortex. J. Vis. 3, 586–598 (2003).
pubmed: 14640882
doi: 10.1167/3.10.1
Stensaas, S. S., Eddington, D. K. & Dobelle, W. H. The topography and variability of the primary visual cortex in man. J. Neurosurg. 40, 747–755 (1974).
pubmed: 4826600
doi: 10.3171/jns.1974.40.6.0747
Filimonov, I. N. Uber die Variabilitat der Grosshirnrindenstruktur. Mitteilung II. Regio occipitalis beim erwachsenen Menschen. J. Psychol. Neurol. 45, 65–137 (1932).
Horton, J. C. The representation of the visual field in human striate cortex. Arch. Ophthal. https://doi.org/10.1001/archopht.1991.01080060080030 (1991).
Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. R. The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vis. Res. https://doi.org/10.1016/0042-6989(84)90041-5 (1984).
doi: 10.1016/0042-6989(84)90041-5
pubmed: 6740964
Himmelberg, M. M. et al. Cross-dataset reproducibility of human retinotopic maps. Neuroimage 244, 118609 (2021).
pubmed: 34582948
doi: 10.1016/j.neuroimage.2021.118609
Benson, N. C., Kupers, E. R., Barbot, A., Carrasco, M. & Winawer, J. Cortical magnification in human visual cortex parallels task performance around the visual field. Elife 10, e67685 (2021).
Daniel, P. M. & Whitteridge, D. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159, 203–221 (1961).
pubmed: 13883391
pmcid: 1359500
doi: 10.1113/jphysiol.1961.sp006803
Himmelberg, M. M., Winawer, J. & Carrasco, M. Stimulus-dependent contrast sensitivity asymmetries around the visual field. J. Vis. 20, 18 (2020).
pubmed: 32986805
pmcid: 7533736
doi: 10.1167/jov.20.9.18
Rovamo, J., Virsu, V. & Näsänen, R. Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271, 54–56 (1978).
pubmed: 625324
doi: 10.1038/271054a0
Strasburger, H., Rentschler, I. & Jüttner, M. Peripheral vision and pattern recognition: a review. J. Vis. 11, 1–82 (2011).
doi: 10.1167/11.5.13
Beard, B. L., Levi, D. M. & Klein, S. A. Vernier acuity with non-simultaneous targets: the cortical magnification factor estimated by psychophysics. Vis. Res. 37, 325–346 (1997).
pubmed: 9135866
doi: 10.1016/S0042-6989(96)00109-5
Levi, D. M., Klein, S. A. & Aitsebaomo, P. Detection and discrimination of the direction of motion in central and peripheral vision of normal and amblyopic observers. Vis. Res. 24, 789–800 (1984).
pubmed: 6474836
doi: 10.1016/0042-6989(84)90150-0
Levi, D. M., Klein, S. A. & Aitsebaomo, A. P. Vernier acuity, crowding and cortical magnification. Vision Res. https://doi.org/10.1016/0042-6989(85)90207-X (1985).
Westheimer, G. The spatial grain of the perifoveal visual field. Vis. Res. 22, 157–162 (1982).
pubmed: 7101739
doi: 10.1016/0042-6989(82)90177-8
Engel, S. A. et al. fMRI of human visual cortex. Nature 369, 525 (1994).
pubmed: 8031403
doi: 10.1038/369525a0
Inouye, T. Die Sehstorungen bei Schussverletzungen der Kortikalen Sehsphare: Nach Beobachtungen an Verwundeten der letszten japanischen Kriege. (Engelmann, 1909).
Holmes, G. Disturbances of vision by cerebral lesions. Br. Med. J. 2, 193–199 (1919).
pubmed: 20769578
pmcid: 2342572
doi: 10.1136/bmj.2.3059.193
Carrasco, M., Talgar, C. P. & Cameron, E. L. Characterizing visual performance fields: effects of transient covert attention, spatial frequency, eccentricity, task and set size. Spat. Vis. 15, 61–75 (2001).
pubmed: 11893125
pmcid: 4332623
doi: 10.1163/15685680152692015
Cameron, E. L., Tai, J. C. & Carrasco, M. Covert attention affects the psychometric function of contrast sensitivity. Vis. Res. 42, 949–967 (2002).
pubmed: 11934448
doi: 10.1016/S0042-6989(02)00039-1
Barbot, A., Xue, S. & Carrasco, M. Asymmetries in visual acuity around the visual field. J. Vis. 21, 2 (2021).
pubmed: 33393963
pmcid: 7794272
doi: 10.1167/jov.21.1.2
Fuller, S. & Carrasco, M. Perceptual consequences of visual performance fields: the case of the line motion illusion. J. Vis. 9, 1–17 (2009).
pubmed: 19757922
doi: 10.1167/9.4.13
Hanning, N. M., Himmelberg, M. M. & Carrasco, M. Presaccadic attention enhances contrast sensitivity, but not at the upper vertical meridian. iScience 25, 2021.10.01.461760 (2022).
Purokayastha, S., Roberts, M. & Carrasco, M. Voluntary attention improves performance similarly around the visual field. Atten. Percept. Psychophys. https://doi.org/10.3758/s13414-021-02316-y (2021).
doi: 10.3758/s13414-021-02316-y
pubmed: 34036535
Silva, M. F. et al. Radial asymmetries in population receptive field size and cortical magnification factor in early visual cortex. Neuroimage 167, 41–52 (2018).
pubmed: 29155078
doi: 10.1016/j.neuroimage.2017.11.021
Albrecht, D. G. & Hamilton, D. B. Striate cortex of monkey and cat: contrast response function. J. Neurophysiol. 48, 217–237 (1982).
pubmed: 7119846
doi: 10.1152/jn.1982.48.1.217
Boynton, G. M., Demb, J. B., Glover, G. H. & Heeger, D. J. Neuronal basis of contrast discrimination. Vis. Res. 39, 257–269 (1999).
pubmed: 10326134
doi: 10.1016/S0042-6989(98)00113-8
DeValois, R. L. & DeValois, K. K. Spatial Vision. (Oxford University Press, 1991). https://doi.org/10.1093/acprof:oso/9780195066579.001.0001 .
Albrecht, D. G., Geisler, W. S., Frazor, R. A. & Crane, A. M. Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J. Neurophysiol. 88, 888–913 (2002).
pubmed: 12163540
doi: 10.1152/jn.2002.88.2.888
Marquardt, I., Schneider, M., Gulban, O. F., Ivanov, D. & Uludağ, K. Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI. Hum. Brain Mapp. 39, 2812–2827 (2018).
pubmed: 29575494
pmcid: 6866457
doi: 10.1002/hbm.24042
Himmelberg, M. M. & Wade, A. R. Eccentricity-dependent temporal contrast tuning in human visual cortex measured with fMRI. Neuroimage 184, 462–474 (2019).
pubmed: 30243956
doi: 10.1016/j.neuroimage.2018.09.049
Sclar, G., Lennie, P. & DePriest, D. D. Contrast adaptation in striate cortex of macaque. Vis. Res. 29, 747–755 (1989).
pubmed: 2623819
doi: 10.1016/0042-6989(89)90087-4
Virsu, V. & Rovamo, J. Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp. Brain Res. 37, 475–494 (1979).
pubmed: 520438
doi: 10.1007/BF00236818
Rockel, A. J., Hiorns, R. W. & Powell, T. P. The basic uniformity in structure of the neocortex. Brain 103, 221–244 (1980).
pubmed: 6772266
doi: 10.1093/brain/103.2.221
Hubel, D. H. & Wiesel, T. N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198, 1–59 (1977).
pubmed: 20635
doi: 10.1098/rspb.1977.0085
Leuba, G. & Kraftsik, R. Changes in volume, surface estimate, three-dimensional shape and total number of neurons of the human primary visual cortex from midgestation until old age. Anat. Embryol. 190, 351–366 (1994).
doi: 10.1007/BF00187293
Benson, N. C. et al. The human connectome project 7 Tesla retinotopy dataset: Description and population receptive field analysis. J. Vis. 18, 1–22 (2018).
doi: 10.1167/18.13.23
Caruso, J. C. & Cliff, N. Empirical size, coverage, and power of confidence intervals for Spearman’s rho. Educ. Psychol. Meas. 57, 637–654 (1997).
doi: 10.1177/0013164497057004009
Herculano-Houzel, S., Messeder, D. J., Fonseca-Azevedo, K. & Pantoja, N. A. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals. Front. Neuroanat. 9, 64 (2015).
pubmed: 26082686
pmcid: 4450177
doi: 10.3389/fnana.2015.00064
Kvam, P. H. & Vidakovic, B. Nonparametric Statistics with Applications to Science and Engineering. (John Wiley & Sons, 2007).
O’Connell, C. et al. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI. Neuroreport 27, 1225 (2016).
pubmed: 27631541
pmcid: 5037044
doi: 10.1097/WNR.0000000000000682
Liu, T., Heeger, D. J. & Carrasco, M. Neural correlates of the visual vertical meridian asymmetry. J. Vis. 6, 1294–1306 (2006).
pubmed: 17209736
doi: 10.1167/6.11.12
Aghajari, S., Vinke, L. N. & Ling, S. Population spatial frequency tuning in human early visual cortex. J. Neurophysiol. 123, 773–785 (2020).
pubmed: 31940228
pmcid: 7052645
doi: 10.1152/jn.00291.2019
Kurzawski, J. W. et al. An enhanced Bouma model fits a hundred people’s visual crowding. bioRxiv (2021).
White, A., Tang, K. & Yeatman, J. The field of view for word recognition: crowding and hemifield asymmetries. J. Vis. 20, 911–911 (2020).
doi: 10.1167/jov.20.11.911
Greenwood, J. A., Szinte, M., Sayim, B. & Cavanagh, P. Variations in crowding, saccadic precision, and spatial localization reveal the shared topology of spatial vision. Proc. Natl. Acad. Sci. U.S.A. 114, 3573–3582 (2017).
Mishkin, M. & Gorgays, D. G. Word recognition as a function of retinal locus. J. Exp. Psychol. 43, 43–48 (1952).
pubmed: 14907990
doi: 10.1037/h0061361
Worrall, N. & Coles, P. Visual field differences in recognizing letters. Percept. Psychophys. 20, 21–24 (1976).
doi: 10.3758/BF03198698
Schwarzkopf, D. S., Song, C. & Rees, G. The surface area of human V1 predicts the subjective experience of object size. Nat. Neurosci. 14, 28–30 (2011).
pubmed: 21131954
doi: 10.1038/nn.2706
Curcio, C. A., Sloan, K. R., Packer, O., Hendrickson, A. E. & Kalina, R. E. Distribution of cones in human and monkey retina: Individual variability and radial asymmetry. Science 236, 579–582 (1987).
pubmed: 3576186
doi: 10.1126/science.3576186
Miyata, T., Benson, N. C., Winawer, J. & Takemura, H. Structural covariance and heritability of the optic tract and primary visual cortex in living human brains. bioRxiv 2022.01.27.477973 https://doi.org/10.1101/2022.01.27.477973 (2022).
Song, C., Schwarzkopf, D. S., Kanai, R. & Rees, G. Neural population tuning links visual cortical anatomy to human visual perception. Neuron 85, 641–656 (2015).
pubmed: 25619658
pmcid: 4321887
doi: 10.1016/j.neuron.2014.12.041
Silva, M. F. et al. Simultaneous changes in visual acuity, cortical population receptive field size, visual field map size, and retinal thickness in healthy human aging. Brain Struct. Funct. https://doi.org/10.1007/s00429-021-02338-0 (2021).
doi: 10.1007/s00429-021-02338-0
pubmed: 34245381
pmcid: 8541970
Song, C., Schwarzkopf, D. S. & Rees, G. Variability in visual cortex size reflects tradeoff between local orientation sensitivity and global orientation modulation. Nat. Commun. 4, 2201 (2013).
pubmed: 23887643
doi: 10.1038/ncomms3201
Barlow, H. B., Kaushal, T. P., Hawken, M. & Parker, A. J. Human contrast discrimination and the threshold of cortical neurons. J. Opt. Soc. Am. A 4, 2366–2371 (1987).
pubmed: 3430223
doi: 10.1364/JOSAA.4.002366
Campbell, F. W. & Kulikowski, J. J. Orientational selectivity of the human visual system. J. Physiol. 187, 437–445 (1966).
pubmed: 5972183
pmcid: 1395934
doi: 10.1113/jphysiol.1966.sp008101
Genç, E., Bergmann, J., Singer, W. & Kohler, A. Surface area of early visual cortex predicts individual speed of traveling waves during binocular rivalry. Cereb. Cortex 25, 1499–1508 (2015).
pubmed: 24334918
doi: 10.1093/cercor/bht342
Bergmann, J., Genç, E., Kohler, A., Singer, W. & Pearson, J. Smaller primary visual cortex is associated with stronger, but less precise mental imagery. Cereb. Cortex 26, 3838–3850 (2016).
pubmed: 26286919
doi: 10.1093/cercor/bhv186
Verghese, A., Kolbe, S. C., Anderson, A. J., Egan, G. F. & Vidyasagar, T. R. Functional size of human visual area V1: a neural correlate of top-down attention. Neuroimage 93, 47–52 (2014).
pubmed: 24583254
doi: 10.1016/j.neuroimage.2014.02.023
Kurzawski, J. W., Pelli, D. G. & Winawer, J. A. Conservation across individuals of cortical crowding distance in human V4. J. Vis. 21, 2675–2675 (2021).
doi: 10.1167/jov.21.9.2675
Harvey, B. M. & Dumoulin, S. O. The relationship between cortical magnification factor and population receptive field size in human visual cortex: constancies in cortical architecture. J. Neurosci. 31, 13604–13612 (2011).
pubmed: 21940451
pmcid: 6623292
doi: 10.1523/JNEUROSCI.2572-11.2011
Himmelberg, M. M., Gardner, J. & Winawer, J. What has vision science taught us about fMRI? PsyArXiv, (2022).
Moutsiana, C. et al. Cortical idiosyncrasies predict the perception of object size. Nat. Commun. 7, 12110 (2016).
pubmed: 27357864
pmcid: 4931347
doi: 10.1038/ncomms12110
Abrams, J., Nizam, A. & Carrasco, M. Isoeccentric locations are not equivalent: the extent of the vertical meridian asymmetry. Vis. Res. 52, 70–78 (2012).
pubmed: 22086075
doi: 10.1016/j.visres.2011.10.016
Baldwin, A. S., Meese, T. S. & Baker, D. H. The attenuation surface for contrast sensitivity has the form of a witch’s hat within the central visual field. J. Vis. 12, 1–17 (2012).
Regan, D. & Beverley, K. I. Visual fields described by contrast sensitivity, by acuity, and by relative sensitivity to different orientations. Invest. Ophthalmol. Vis. Sci. 24, 753–759 (1983).
Silva, M. F. et al. Retinal and cortical patterns of spatial anisotropy in contrast sensitivity tasks. Vis. Res. 48, 127–135 (2008).
pubmed: 18067943
doi: 10.1016/j.visres.2007.10.018
Rovamo, J. & Virsu, V. An estimation and application of the human cortical magnification factor. Exp. Brain Res. 37, 495–510 (1979).
pubmed: 520439
doi: 10.1007/BF00236819
Robson, J. G. & Graham, N. Probability summation and regional variation in contrast sensitivity across the visual field. Vis. Res. 21, 409–418 (1981).
pubmed: 7269319
doi: 10.1016/0042-6989(81)90169-3
Corbett, J. E. & Carrasco, M. Visual performance fields: frames of reference. PLoS One 6, e24470 (2011).
pubmed: 21931727
pmcid: 3169603
doi: 10.1371/journal.pone.0024470
Fuller, S., Rodriguez, R. Z. & Carrasco, M. Apparent contrast differs across the vertical meridian: visual and attentional factors. J. Vis. 8, 16.1–16 (2008).
doi: 10.1167/8.1.16
Carrasco, M., Williams, P. E. & Yeshurun, Y. Covert attention increases spatial resolution with or without masks: support for signal enhancement. J. Vis. 2, 1351–1365 (2002).
doi: 10.1167/2.6.4
Talgar, C. P. & Carrasco, M. Vertical meridian asymmetry in spatial resolution: visual and attentional factors. Psychon. Bull. Rev. 9, 714–722 (2002).
pubmed: 12613674
doi: 10.3758/BF03196326
Carrasco, M., Giordano, A. M. & McElree, B. Temporal performance fields: visual and attentional factors. Vis. Res. 44, 1351–1365 (2004).
pubmed: 15066395
doi: 10.1016/j.visres.2003.11.026
Montaser-Kouhsari, L. & Carrasco, M. Perceptual asymmetries are preserved in short-term memory tasks. Atten. Percept. Psychophys. 71, 1782–1792 (2009).
pubmed: 19933562
pmcid: 3697833
doi: 10.3758/APP.71.8.1782
Myers, C. & Carrasco, M. Adolescents’ and adults’ sensitivity differs around the visual field. J. Vis. 20, 873–873 (2020).
doi: 10.1167/jov.20.11.873
Dekker, T. M., Schwarzkopf, D. S., de Haas, B., Nardini, M. & Sereno, M. I. Population receptive field tuning properties of visual cortex during childhood. Dev. Cogn. Neurosci. 37, 100614 (2019).
pubmed: 30777677
pmcid: 6969313
doi: 10.1016/j.dcn.2019.01.001
Carrasco, M., Roberts, M., Myers, C., & Shukla, L. Visual field asymmetries vary between children and adults. Curr. Biol. 32, R509–R510 (2022).
Curcio, C. A., Sloan, K. R., Kalina, R. E. & Hendrickson, A. E. Human photoreceptor topography. J. Comp. Neurol. 292, 497–523 (1990).
pubmed: 2324310
doi: 10.1002/cne.902920402
Song, H., Chui, T. Y. P., Zhong, Z., Elsner, A. E. & Burns, S. A. Variation of cone photoreceptor packing density with retinal eccentricity and age. Investig. Ophthalmol. Vis. Sci. 52, 7376–7384 (2011).
doi: 10.1167/iovs.11-7199
Curcio, C. A. & Allen, K. A. Topography of ganglion cells in human retina. J. Comp. Neurol. 300, 5–25 (1990).
pubmed: 2229487
doi: 10.1002/cne.903000103
Watson, A. B. A formula for human retinal ganglion cell receptive field density as a function of visual field location. J. Vis. 14, 1–17 (2014).
Kupers, E. R., Carrasco, M. & Winawer, J. Modeling visual performance differences ‘around’ the visual field: a computational observer approach. PLoS Comput. Biol. 15, e1007063 (2019).
pubmed: 31125331
pmcid: 6553792
doi: 10.1371/journal.pcbi.1007063
Kupers, E. R., Benson, N. C., Carrasco, M. & Winawer, J. Asymmetries around the visual field: from retina to cortex to behavior. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1009771 (2022).
doi: 10.1371/journal.pcbi.1009771
pubmed: 35007281
pmcid: 8782511
Arcaro, M. J., McMains, S. A., Singer, B. D. & Kastner, S. Retinotopic organization of human ventral visual cortex. J. Neurosci. 29, 10638–10652 (2009).
pubmed: 19710316
pmcid: 2775458
doi: 10.1523/JNEUROSCI.2807-09.2009
Winawer, J., Horiguchi, H., Sayres, R. A., Amano, K. & Wandell, B. A. Mapping hV4 and ventral occipital cortex: the venous eclipse. J. Vis. 10, 1–22 (2010).
pubmed: 20616143
doi: 10.1167/10.5.1
Larsson, J. & Heeger, D. J. Two retinotopic visual areas in human lateral occipital cortex. J. Neurosci. 26, 13128–13142 (2006).
pubmed: 17182764
pmcid: 1904390
doi: 10.1523/JNEUROSCI.1657-06.2006
Broderick, W. F., Simoncelli, E. P. & Winawer, J. Mapping spatial frequency preferences across human primary visual cortex. J. Vis. 22, 3 (2022).
pubmed: 35266962
pmcid: 8934567
doi: 10.1167/jov.22.4.3
Gardner, J. L., Merriam, E. P., Schluppeck, D. & Larsson, J. MGL: visual psychophysics stimuli and experimental design package. https://doi.org/10.5281/zenodo.1299497 (2018).
Cornelissen, F. W., Peters, E. M. & Palmer, J. The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behav. Res. Methods Instrum. Comput. 34, 613–617 (2002).
pubmed: 12564564
doi: 10.3758/BF03195489
Taylor, M. M. & Creelman, C. D. PEST: efficient estimates on probability functions. J. Acoust. Soc. Am. 41, 782–787 (1967).
doi: 10.1121/1.1910407
Michelson, A. Studies in Optics. (University of Chicago Press, 1927).
Dumoulin, S. O. & Wandell, B. A. Population receptive field estimates in human visual cortex. Neuroimage 39, 647–660 (2008).
pubmed: 17977024
doi: 10.1016/j.neuroimage.2007.09.034
Kleiner, M. et al. What’s new in Psychtoolbox-3? Perception 36, 1–16 (2007).
Winawer, J., Kupers, E. R., Perry, M. & Himmelberg, M. WinawerLab/vistadisp: v0.1. https://doi.org/10.5281/zenodo.6456310 (2022).
Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).
pubmed: 19104670
pmcid: 2605405
Xu, J. et al. Evaluation of slice accelerations using multiband echo planar imaging at 3T. Neuroimage 83, 991–1001 (2013).
pubmed: 23899722
doi: 10.1016/j.neuroimage.2013.07.055
Feinberg, D. A. et al. Multiplexed echo planar imaging for sub-second whole brain fMRI and fast diffusion imaging. PLoS One 5, e15710 (2010).
Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).
pubmed: 30532080
doi: 10.1038/s41592-018-0235-4
Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 1–15 (2011).
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).
pubmed: 11293691
doi: 10.1109/42.906424
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage https://doi.org/10.1006/nimg.1998.0395 (1999).
Friston, K. J. et al. Event-related fMRI: characterizing differential responses. Neuroimage 7, 30–40 (1998).
pubmed: 9500830
doi: 10.1006/nimg.1997.0306
Worsley, K. J. et al. A general statistical analysis for fMRI data. Neuroimage 15, 1–15 (2002).
pubmed: 11771969
doi: 10.1006/nimg.2001.0933
Benson, N. C. & Winawer, J. Bayesian analysis of retinotopic maps. Elife 7, 1–29 (2018).
doi: 10.7554/eLife.40224
Schira, M. M., Tyler, C. W., Breakspear, M. & Spehar, B. The foveal confluence in human visual cortex. J. Neurosci. 29, 9050–9058 (2009).
pubmed: 19605642
pmcid: 6665445
doi: 10.1523/JNEUROSCI.1760-09.2009