FDG PET in the differential diagnosis of degenerative parkinsonian disorders: usefulness of voxel-based analysis in clinical practice.


Journal

Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
ISSN: 1590-3478
Titre abrégé: Neurol Sci
Pays: Italy
ID NLM: 100959175

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 16 02 2022
accepted: 23 05 2022
pubmed: 14 6 2022
medline: 20 8 2022
entrez: 13 6 2022
Statut: ppublish

Résumé

The early differential diagnosis among neurodegenerative parkinsonian disorders becomes essential to set up the correct clinical-therapeutic approach. The increased utilization of [ Eighty-three subjects with a clinically confirmed diagnosis of degenerative parkinsonian disorders who underwent FDG brain PET/CT were selected. A voxel-based analysis was set up using statistical parametric mapping (SPM) on MATLAB to produce maps of brain hypometabolism and relative hypermetabolism. Four nuclear physicians (two expert and two not expert), blinded to the patients' symptoms, other physicians' evaluations, and final clinical diagnosis, independently evaluated all data by visual assessment and by adopting metabolic maps. In not-expert evaluators, the support of both hypometabolism and hypermetabolism maps results in a significant increase in diagnostic accuracy as well as clinical confidence. In expert evaluators, the increase in accuracy and in diagnostic confidence is mainly supported by hypometabolism maps alone. In this study, we demonstrated the additional value of combining voxel-based analyses with qualitative assessment of brain PET images. Moreover, maps of relative hypermetabolism can also make their contribution in clinical practice, particularly for less experienced evaluators.

Sections du résumé

BACKGROUND BACKGROUND
The early differential diagnosis among neurodegenerative parkinsonian disorders becomes essential to set up the correct clinical-therapeutic approach. The increased utilization of [
METHOD METHODS
Eighty-three subjects with a clinically confirmed diagnosis of degenerative parkinsonian disorders who underwent FDG brain PET/CT were selected. A voxel-based analysis was set up using statistical parametric mapping (SPM) on MATLAB to produce maps of brain hypometabolism and relative hypermetabolism. Four nuclear physicians (two expert and two not expert), blinded to the patients' symptoms, other physicians' evaluations, and final clinical diagnosis, independently evaluated all data by visual assessment and by adopting metabolic maps.
RESULTS RESULTS
In not-expert evaluators, the support of both hypometabolism and hypermetabolism maps results in a significant increase in diagnostic accuracy as well as clinical confidence. In expert evaluators, the increase in accuracy and in diagnostic confidence is mainly supported by hypometabolism maps alone.
CONCLUSIONS CONCLUSIONS
In this study, we demonstrated the additional value of combining voxel-based analyses with qualitative assessment of brain PET images. Moreover, maps of relative hypermetabolism can also make their contribution in clinical practice, particularly for less experienced evaluators.

Identifiants

pubmed: 35697965
doi: 10.1007/s10072-022-06166-w
pii: 10.1007/s10072-022-06166-w
pmc: PMC9385817
doi:

Substances chimiques

Fluorodeoxyglucose F18 0Z5B2CJX4D

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5333-5341

Informations de copyright

© 2022. The Author(s).

Références

Caminiti SP, Alongi P, Majno L, Volontè MA, Cerami C, Gianolli L, Comi G, Perani D (2017) Evaluation of an optimized [
doi: 10.1111/ene.13269 pubmed: 28244178
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601. https://doi.org/10.1002/mds.26424
doi: 10.1002/mds.26424 pubmed: 26474316
Reich SG, Savitt JM (2019) Parkinson’s disease. Med Clin North Am 103(2):337–350. https://doi.org/10.1016/j.mcna.2018.10.014
doi: 10.1016/j.mcna.2018.10.014 pubmed: 30704685
Berti V, Pupi A, Mosconi L (2011) PET/CT in diagnosis of movement disorders. Ann N Y Acad Sci 1228:93–108. https://doi.org/10.1111/j.1749-6632.2011.06025.x
doi: 10.1111/j.1749-6632.2011.06025.x pubmed: 21718327 pmcid: 3692301
Teune LK, Renken RJ, Mudali D, De Jong BM, Dierckx RA, Roerdink JBTM, Leenders KL (2013) Validation of parkinsonian disease-related metabolic brain patterns. Mov Disord 28(4):547–551. https://doi.org/10.1002/mds.25361
doi: 10.1002/mds.25361 pubmed: 23483593
Walker Z, Gandolfo F, Orini S, Garibotto V, Agosta F, Arbizu J, Bouwman F, Drzezga A, Nestor P, Boccardi M, Altomare D, Festari C, Nobili F (2018) Clinical utility of FDG PET in Parkinson’s disease and atypical parkinsonism associated with dementia. Eur J Nucl Med Mol Imaging 45(9):1534–1545. https://doi.org/10.1007/s00259-018-4031-2
doi: 10.1007/s00259-018-4031-2 pubmed: 29779045 pmcid: 6061481
Eidelberg D, Takikawa S, Moeller JR, Dhawan V, Redington K, Chaly T, Robeson W, Dahl JR, Margouleff D, Fazzini E, Przedborski S, Fahn S (1993) Striatal hypometabolism distinguishes striatonigral degeneration from Parkinson’s disease. Ann Neurol 33(5):518–527. https://doi.org/10.1002/ana.410330517
doi: 10.1002/ana.410330517 pubmed: 8498828
Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, Eidelberg D (2005) FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 26(3):912–921. https://doi.org/10.1016/j.neuroimage.2005.03.012
doi: 10.1016/j.neuroimage.2005.03.012 pubmed: 15955501
Borghammer P, Chakravarty M, Jonsdottir KY, Sato N, Matsuda H, Ito K, Arahata Y, Kato T, Gjedde A (2010) Cortical hypometabolism and hypoperfusion in Parkinson’s disease is extensive: probably even at early disease stages. Brain Struct Funct 214(4):303–17. https://doi.org/10.1007/s00429-010-0246-0
doi: 10.1007/s00429-010-0246-0 pubmed: 20361208
Berti V, Pupi A, Mosconi L (2011) PET-CT in diagnosis of dementia.pdf. Ann N Y Acad Sci 1228:81–92. https://doi.org/10.1111/j.1749-6632.2011.06015.x.PET/CT
doi: 10.1111/j.1749-6632.2011.06015.x.PET/CT pubmed: 21718326 pmcid: 3692287
Yong SW, Yoon JK, An YS, Lee PH (2007) A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 14(12):1357–1362. https://doi.org/10.1111/j.1468-1331.2007.01977.x
doi: 10.1111/j.1468-1331.2007.01977.x pubmed: 17941855
Berti V, Pupi A, Mosconi L (2011) PET / CT in diagnosis of movement disorders Edited by Foxit Reader. Ann N Y Acad Sci 1228(C):93–108. https://doi.org/10.1111/j.1749-6632.2011.06025.x.PET/CT
doi: 10.1111/j.1749-6632.2011.06025.x.PET/CT pubmed: 21718327 pmcid: 3692301
Pardini M, Huey ED, Spina S, Kreisl WC, Morbelli S, Wassermann EM, Nobili F, Ghetti B, Grafman J (2019) FDG-PET patterns associated with underlying pathology in corticobasal syndrome. Neurology 92(10):e1121–e1135. https://doi.org/10.1212/WNL.0000000000007038
doi: 10.1212/WNL.0000000000007038 pubmed: 30700592 pmcid: 6442013
Klaffke S, Kuhn AA, Plotkin M, Amthauer H, Harnack D, Felix R, Kupsch A (2006) Dopamine transporters, D2 receptors, and glucose metabolism in corticobasal degeneration. Mov Disord 21(10):1724–7. https://doi.org/10.1002/mds.21004
doi: 10.1002/mds.21004 pubmed: 16773621
Juh R, Pae CU, Kim TS, Lee CU, Choe B, Suh T (2005) Cerebral glucose metabolism in corticobasal degeneration comparison with progressive supranuclear palsy using statistical mapping analysis. Neurosci Lett 383(1–2):22–7. https://doi.org/10.1016/j.neulet.2005.03.057
doi: 10.1016/j.neulet.2005.03.057 pubmed: 15936506
McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(1863–1872):16
Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(670–676):17
Armstrong MJ, Litvan I, Lang AE et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503
doi: 10.1212/WNL.0b013e31827f0fd1
Tripathi M, Dhawan V, Peng S et al (2013) Differential diagnosis of parkinsonian syndromes using F-18 fluorodeoxyglucose positron emission tomography. Neuroradiology 55:483–492
doi: 10.1007/s00234-012-1132-7
Tang CC, Poston KL, Eckert T, Feigin A, Frucht S, Gudesblatt M, Dhawan V, Lesser M, Vonsattel JP, Fahn S, Eidelberg D (2010) Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol 9(2):149–158. https://doi.org/10.1016/S1474-4422(10)70002-8
doi: 10.1016/S1474-4422(10)70002-8 pubmed: 20061183 pmcid: 4617666
Guedj E et al (2022) EANM procedure guidelines for brain PET imaging using [18F]FDG, version 3. Eur J Nucl Med Mol Imaging. 49(2):632–651
doi: 10.1007/s00259-021-05603-w
Perani D, Della Rosa PA, Cerami C et al (2014) Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. Neuroimage Clin 6:445–454
doi: 10.1016/j.nicl.2014.10.009
Meyer PT, Frings L, Rücker G, Hellwig S (2017)
doi: 10.2967/jnumed.116.186403 pubmed: 28912150
Lu CF, Soong BW, Wu HM, Teng S, Wang PS, Wu YT (2013) Disrupted cerebellar connectivity reduces whole-brain network efficiency in multiple system atrophy. Mov Disord 28(3):362–369. https://doi.org/10.1002/mds.25314
doi: 10.1002/mds.25314 pubmed: 23325625
Lee MJ, Kim TH, Mun CW, Shin HK, Son J, Lee JH (2018) Spatial correlation and segregation of multimodal MRI abnormalities in multiple system atrophy. J Neurol 265(7):1540–1547. https://doi.org/10.1007/s00415-018-8874-z
doi: 10.1007/s00415-018-8874-z pubmed: 29696500
Armstrong MJ (2018) Progressive supranuclear palsy: an update. Curr Neurol Neurosci Rep 18(3):1–9. https://doi.org/10.1007/s11910-018-0819-5
doi: 10.1007/s11910-018-0819-5
Cerami C, Dodich A, Iannaccone S, Magnani G, Marcone A, Guglielmo P, Vanoli G, Cappa SF, Perani D (2020) Individual brain metabolic signatures in corticobasal syndrome. J Alzheimers Dis 76(2):517–528. https://doi.org/10.3233/JAD-200153
doi: 10.3233/JAD-200153 pubmed: 32538847
Watanabe H, Hara K, Ito M, Katsuno M, Sobue G (2018) New diagnostic criteria for Parkinson’s disease: MDS-PD criteria. Brain Nerve 70(2):139–146. https://doi.org/10.11477/mf.1416200966 (Japanese)
doi: 10.11477/mf.1416200966 pubmed: 29433115
Alexander SK, Rittman T, Xuereb JH, Bak TH, Hodges JR, Rowe JB (2014) Validation of the new consensus criteria for the diagnosis of corticobasal degeneration. J Neurol Neurosurg Psychiatry 85(8):925–9. https://doi.org/10.1136/jnnp-2013-307035
doi: 10.1136/jnnp-2013-307035 pubmed: 24521567
Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW, Colosimo C, Dürr A, Fowler CJ, Kaufmann H, Klockgether T, Lees A, Poewe W, Quinn N, Revesz T, Robertson D, Sandroni P, Seppi K, Vidailhet M (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9):670–6. https://doi.org/10.1212/01.wnl.0000324625.00404.15
doi: 10.1212/01.wnl.0000324625.00404.15 pubmed: 18725592 pmcid: 2676993
Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, Mollenhauer B, Müller U, Nilsson C, Whitwell JL, Arzberger T, Englund E, Gelpi E, Giese A, Irwin DJ, Meissner WG, Pantelyat A, Rajput A, van Swieten JC, Troakes C, Antonini A, Bhatia KP, Bordelon Y, Compta Y, Corvol JC, Colosimo C, Dickson DW, Dodel R, Ferguson L, Grossman M, Kassubek J, Krismer F, Levin J, Lorenzl S, Morris HR, Nestor P, Oertel WH, Poewe W, Rabinovici G, Rowe JB, Schellenberg GD, Seppi K, van Eimeren T, Wenning GK, Boxer AL, Golbe LI, Litvan I (2017) Movement Disorder Society-endorsed PSP Study Group Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32(6):853–864. https://doi.org/10.1002/mds.26987
doi: 10.1002/mds.26987 pubmed: 28467028 pmcid: 5516529
Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, Gilardi MC, Frisoni G, Friston K, Ashburner J, Perani D, EADC-PET Consortium (2014) A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics 12(4):575–93. https://doi.org/10.1007/s12021-014-9235-4
doi: 10.1007/s12021-014-9235-4 pubmed: 24952892
Caminiti SP, Sala A, Presotto L, Chincarini A, Sestini S, Perani D; Alzheimer’s Disease Neuroimaging Initiative (ADNI), for the Associazione Italiana Medicina Nucleare (AIMN) datasets, The AIMN Neurology Study-Group collaborators:, Schillaci O, Berti V, Calcagni ML, Cistaro A, Morbelli S, Nobili F, Pappatà S, Volterrani D, Gobbo CL (2021) Validation of FDG-PET datasets of normal controls for the extraction of SPM-based brain metabolism maps. Eur J Nucl Med Mol Imaging. 48(8):2486-2499 https://doi.org/10.1007/s00259-020-05175-1

Auteurs

Annachiara Arnone (A)

Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy. annachiara.arnone93@gmail.com.

Michela Allocca (M)

Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.

Rossella Di Dato (R)

Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.

Giulia Puccini (G)

Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.

Iashar Laghai (I)

Department of Nuclear Medicine, Hospital of Prato, Via Suor Niccolina Infermiera, 20/22, 59100, Prato, Italy.

Federica Rubino (F)

Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.

Matilde Nerattini (M)

Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.

Silvia Ramat (S)

Parkinson Unit, Department of NeuroMuscular- Skeletal and Sensorial Organs, AOU Careggi, Florence, Italy.

Gemma Lombardi (G)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Camilla Ferrari (C)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Valentina Bessi (V)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Sandro Sorbi (S)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Maria Teresa De Cristofaro (MT)

Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.

Cristina Polito (C)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Valentina Berti (V)

Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH