High temperature molecular motions within a model protomembrane architecture.


Journal

Physical chemistry chemical physics : PCCP
ISSN: 1463-9084
Titre abrégé: Phys Chem Chem Phys
Pays: England
ID NLM: 100888160

Informations de publication

Date de publication:
22 Jun 2022
Historique:
pubmed: 15 6 2022
medline: 25 6 2022
entrez: 14 6 2022
Statut: epublish

Résumé

Modern phospholipid membranes are known to be in a functional, physiological state, corresponding to the liquid crystalline phase, only under very precise external conditions. The phase is characterised by specific lipid motions, which seem mandatory to permit sufficient flexibility and stability for the membrane. It can be assumed that similar principles hold for proto-membranes at the origin of life although they were likely composed of simpler, single chain fatty acids and alcohols. In the present study we investigated molecular motions of four types of model membranes to shed light on the variations of dynamics and structure from low to high temperature as protocells might have existed close to hot vents. We find a clear hierarchy among the flexibilities of the samples, where some structural parameters seem to depend on the lipid type used while others do not.

Identifiants

pubmed: 35698855
doi: 10.1039/d2cp01205g
doi:

Substances chimiques

Lipid Bilayers 0
Phospholipids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15083-15090

Auteurs

Loreto Misuraca (L)

Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France. jpeters@ill.fr.
Institut Laue Langevin, F-38042 Grenoble Cedex 9, France.

Tatsuhito Matsuo (T)

Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France. jpeters@ill.fr.
Institut Laue Langevin, F-38042 Grenoble Cedex 9, France.
Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan.

Aline Cisse (A)

Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France. jpeters@ill.fr.
Institut Laue Langevin, F-38042 Grenoble Cedex 9, France.

Josephine LoRicco (J)

INSA Lyon, Université de Lyon, CNRS, UMR5240, Villeurbanne, France. philippe.oger@insa-lyon.fr.

Antonio Caliò (A)

INSA Lyon, Université de Lyon, CNRS, UMR5240, Villeurbanne, France. philippe.oger@insa-lyon.fr.

Jean-Marc Zanotti (JM)

Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.

Bruno Demé (B)

Institut Laue Langevin, F-38042 Grenoble Cedex 9, France.

Philippe Oger (P)

INSA Lyon, Université de Lyon, CNRS, UMR5240, Villeurbanne, France. philippe.oger@insa-lyon.fr.

Judith Peters (J)

Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France. jpeters@ill.fr.
Institut Laue Langevin, F-38042 Grenoble Cedex 9, France.
Institut Universitaire de France, France.

Articles similaires

Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Calcium Carbonate Sand Powders Construction Materials Materials Testing

Classifications MeSH