Mixture Toxicity of Herbicides with Dissimilar Modes of Action to Myriophyllum spicatum.

Diflufenican Herbicide Iodosulfuron-methyl-sodium Mixture Myriophyllum Risk assessment

Journal

Environmental toxicology and chemistry
ISSN: 1552-8618
Titre abrégé: Environ Toxicol Chem
Pays: United States
ID NLM: 8308958

Informations de publication

Date de publication:
09 2022
Historique:
revised: 26 02 2022
received: 24 01 2022
accepted: 06 06 2022
pubmed: 15 6 2022
medline: 30 8 2022
entrez: 14 6 2022
Statut: ppublish

Résumé

Considering the vital role of rooted macrophytes in the aquatic ecosystem, validating assumptions on the interactive effects of herbicides with different modes of action at an environmentally relevant mixture ratio is necessary. We investigated the effects of diflufenican (a carotenoid biosynthesis inhibitor) and iodosulfuron-methyl-sodium (IMS; an acetolactate synthase inhibitor) in a 14-day growth inhibition experiment with Myriophyllum spicatum, wherein single compounds and their combination were tested in parallel (n = 84). The assessment was done using three different methods: significance testing, model deviation ratio (MDR), and mixture interaction factor (MIF). Interactions relative to both concentration addition and independent action were assessed via significance testing. This revealed that diflufenican and IMS acted antagonistically relative to both models for fresh weight and total shoot length (p < 0.05) and that there was slight synergism for the number of side shoots (p < 0.001) relative to concentration addition. The MDR and MIF can only assess interactions relative to the concentration addition model. According to MDR, the mixture appeared to show no interaction (neither antagonistic nor synergistic), whereas the MIF method revealed that the compounds acted antagonistically for fresh weight and that there was a slight synergism for total shoot length and number of side shoots. We conclude that inferences about mixture toxicity interactions are method- and endpoint-dependent, which can have implications for regulatory mixtures assessment. Environ Toxicol Chem 2022;41:2209-2220. © 2022 SETAC.

Identifiants

pubmed: 35698929
doi: 10.1002/etc.5401
doi:

Substances chimiques

Herbicides 0
Water Pollutants, Chemical 0

Banques de données

figshare
['10.6084/m9.figshare.18865892.v1', '10.6084/m9.figshare.18865937.v1']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2209-2220

Informations de copyright

© 2022 SETAC.

Références

Abendroth, J. A., Blankenship, E. E., Martin, A. R., & Roeth, F. W. (2011). Joint action analysis utilizing concentration addition and independent action models. Weed Technology, 25(3), 436-446. https://doi.org/10.1614/WT-D-10-00102.1
Arts, G. H. P., Buijse-Bogdan, L. L., Belgers, J. D. M., van Rhenen-Kersten, C. H., van Wijngaarden, R. P. A., Roessink, I., Maund, S. J., van den Brink, P. J., & Brockt, T. C. M. (2006). Ecological impact in ditch mesocosms of simulated spray drift from a crop protection program for potatoes. Integrated Environmental Assessment and Management, 2(2), 105-125. https://doi.org/10.1002/ieam.5630020204
Ashton, I. P., Abulnaja, K. O., Pallett, K. E., Cole, D. J., & Harwood, J. L. (1992). Diflufenican, a carotenogenesis inhibitor, also reduces acyl lipid synthesis. Pesticide Biochemistry and Physiology, 43(1), 14-21. https://doi.org/10.1016/0048-3575(92)90014-Q
Belden, J. B., Gilliom, R. J., & Lydy, M. J. (2007). How well can we predict the toxicity of pesticide mixtures to aquatic life. Integrated Environmental Assessment and Management, 3(3), 364-372. https://doi.org/10.1897/1551-3793(2007)3[364:HWCWPT]2.0.CO;2
Belgers, J. D. M., Aalderink, G. H., Arts, G. H. P., & Brock, T. C. M. (2011). Can time-weighted average concentrations be used to assess the risks of metsulfuron-methyl to Myriophyllum spicatum under different time-variable exposure regimes? Chemosphere, 85(6), 1017-1025. https://doi.org/10.1016/j.chemosphere.2011.07.025
Cedergreen, N. (2014). Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLOS ONE, 9(5), Article e96580. https://doi.org/10.1371/journal.pone.0096580
Cedergreen, N., Kudsk, P., Mathiassen, S. K., & Streibig, J. C. (2007). Combination effects of herbicides on plants and algae: Do species and test systems matter? Pest Management Science, 63(3), 282-295. https://doi.org/10.1002/ps.1353
Cedergreen, N., & Rasmussen, J. J. (2017). Low dose effects of pesticides in the aquatic environment. In S. O. Duke, P. Kudsk, & K. Solomon (Eds.), Pesticide dose: Effects on the environment and target and non-target organisms (pp. 167-187). American Chemical Society. https://doi.org/10.1021/bk-2017-1249.ch012
Coors, A., & Frische, T. (2011). Predicting the aquatic toxicity of commercial pesticide mixtures. Environmental Sciences Europe, 23(1), Article 22. https://doi.org/10.1186/2190-4715-23-22
Deruytter, D., Baert, J. M., Nevejan, N., De Schamphelaere, K. A. C., & Janssen, C. R. (2017). Mixture toxicity in the marine environment: Model development and evidence for synergism at environmental concentrations. Environmental Toxicology and Chemistry, 36(12), 3471-3479. https://doi.org/10.1002/etc.3913
de Zwart, D., & Posthuma, L. (2005). Complex mixture toxicity for single and multiple species. Environmental Toxicology and Chemistry, 24(10), 2665-2676. https://doi.org/10.1897/04-639R.1
Diepens, N. J., Buffan-Dubau, E., Budzinski, H., Kallerhoff, J., Merlina, G., Silvestre, J., Auby, I., Tapie, N., & Elger, A. (2017). Toxicity effects of an environmental realistic herbicide mixture on the seagrass Zostera noltei. Environmental Pollution, 222, 393-403. https://doi.org/10.1016/j.envpol.2016.12.021
EFSA Panel on Plant Protection Products and Their Residues. (2008). Conclusion regarding the peer review of the pesticide risk assessment of the active substance diflufenican. EFSA Journal, 6(2), 1-84. https://doi.org/10.2903/j.efsa.2008.122r
EFSA Panel on Plant Protection Products and Their Residues. (2013). Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal, 11(7), Article 3290. https://doi.org/10.2903/j.efsa.2013.3290
EFSA Panel on Plant Protection Products and Their Residues. (2014). Scientific opinion addressing the state of the science on risk assessment of plant protection products for non-target terrestrial plants. EFSA Journal, 12(7), Article 3800. https://doi.org/10.2903/j.efsa.2014.3800
EFSA Panel on Plant Protection Products and Their Residues. (2016). Peer review of the pesticide risk assessment of the active substance iodosulfuron-methyl-sodium (approved as iodosulfuron). EFSA Journal, 14(4), Article 4453. https://doi.org/10.2903/J.EFSA.2016.4453
Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Boedeker, W., Gramatica, P., Hamer, V., Scholze, M., Vighi, M., & Grimme, L. H. (2001). Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquatic Toxicology, 56(1), 13-32. https://doi.org/10.1016/S0166-445X(01)00187-4
Feller, C., Richter, E., Smolders, T., & Wichura, A. (2012). Phenological growth stages of edible asparagus (Asparagus officinalis): Codification and description according to the BBCH scale. Annals of Applied Biology, 160(2), 174-180. https://doi.org/10.1111/j.1744-7348.2012.00530.x
FOCUS. (2012). Generic guidance for FOCUS surface water scenarios (Ver. 1.0).
Gubian, S., Suomela, B., & Hoeng, J. (2013). Generalized simulated annealing for global optimization: The GenSA package. R Journal, 5, 13-28.
Gustavsson, M., Kreuger, J., Bundschuh, M., & Backhaus, T. (2017). Pesticide mixtures in the Swedish streams: Environmental risks, contributions of individual compounds and consequences of single-substance oriented risk mitigation. Science of the Total Environment, 598, 973-983. https://doi.org/10.1016/j.scitotenv.2017.04.122
Haas, C. N., Cidambi, K., Kersten, S., & Wright, K. (1996). Quantitative description of mixture toxicity: Effect of level of response on interactions. Environmental Toxicology and Chemistry, 15(8), 1429-1437. https://doi.org/10.1002/etc.5620150824
Hochmuth, J. D., Asselman, J., & De Schamphelaere, K. A. C. (2014). Are interactive effects of harmful algal blooms and copper pollution a concern for water quality management. Water Research, 60, 41-53. https://doi.org/10.1016/j.watres.2014.03.041
Jonker, M. J., Svendsen, C., Bedaux, J. J. M., Bongers, M., & Kammenga, J. E. (2005). Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environmental Toxicology and Chemistry, 24(10), 2701. https://doi.org/10.1897/04-431R.1
Knauert, S., Escher, B., Singer, H., Hollender, J., & Knauer, K. (2008). Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms. Environmental Science & Technology, 42(17), 6424-6430. https://doi.org/10.1021/es072037q
Knauert, S., Singer, H., Hollender, J., & Knauer, K. (2010). Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms. Environmental Pollution, 158(1), 167-174. https://doi.org/10.1016/j.envpol.2009.07.023
Knežević, V., Tunić, T., Gajić, P., Marjan, P., Savić, D., Tenji, D., & Teodorović, I. (2016). Getting more ecologically relevant information from laboratory tests: Recovery of Lemna minor after exposure to herbicides and their mixtures. Archives of Environmental Contamination and Toxicology, 71(4), 572-588. https://doi.org/10.1007/s00244-016-0321-5
Michael Smart, R., & Barko, J. W. (1985). Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquatic Botany, 21(3), 251-263. https://doi.org/10.1016/0304-3770(85)90053-1
Nuttens, A., Chatellier, S., Devin, S., Guignard, C., Lenouvel, A., & Gross, E. M. (2016). Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides. Aquatic Toxicology, 177, 355-364. https://doi.org/10.1016/j.aquatox.2016.06.006
Nys, C., Asselman, J., Hochmuth, J. D., Janssen, C. R., Blust, R., Smolders, E., & De Schamphelaere, K. A. C. (2015). Mixture toxicity of nickel and zinc to Daphnia magna is noninteractive at low effect sizes but becomes synergistic at high effect sizes. Environmental Toxicology and Chemistry, 34(5), 1091-1102. https://doi.org/10.1002/etc.2902
Nys, C., Versieren, L., Cordery, K. I., Blust, R., Smolders, E., & De Schamphelaere, K. A. C. (2017). Systematic evaluation of chronic metal-mixture toxicity to three species and implications for risk assessment. Environmental Science & Technology, 51(8), 4615-4623. https://doi.org/10.1021/acs.est.6b05688
Organisation for Economic Co-operation and Development. (2004). Test No. 219: Sediment-water chironomid toxicity test using siked water. OECD Guidelines for the Testing of Chemicals.
Organisation for Economic Co-operation and Development. (2014). Test No. 239: Water-sediment Myriophyllum spicatum toxicity test. OECD Guidelines for the Testing of Chemicals.
R Foundation for Statistical Computing. (2011). R: A language and environment for statistical computing.
Ridley, S. M. (1982). Carotenoids and herbicide action. In G. Britton & B. Goodwin (Eds.), Carotenoid chemistry and biochemistry (pp. 353-369). Pergamon. https://doi.org/10.1016/B978-0-08-026224-6.50029-2
Sandmann, G. (1987). Structure and activity of herbicidal inhibitors of phytoene desaturase. In R. Greenhalgh & T. R. Roberts (Eds.), Pesticide science and biotechnology: Proceedings of the Sixth International Congress of Pesticide Chemistry Held in Ottawa, Canada, 10-15, August, 1986 (p. 43). Blackwell Scientific Publications.
Sandmann, G., Clarke, I. E., Bramley, P. M., & Boger, P. (1984). Inhibition of phytoene desaturase-The mode of action of certain bleaching herbicides. Zeitschrift fur Naturforschung C, 39(5), 443-449.
Schreiner, V. C., Szöcs, E., Bhowmik, A. K., Vijver, M. G., & Schäfer, R. B. (2016). Pesticide mixtures in streams of several European countries and the USA. Science of the Total Environment, 573, 680-689. https://doi.org/10.1016/j.scitotenv.2016.08.163
Sigma™ [Computer software]. Kynetec.
Sørensen, H., Cedergreen, N., Skovgaard, I. M., & Streibig, J. C. (2007). An isobole-based statistical model and test for synergism/antagonism in binary mixture toxicity experiments. Environmental and Ecological Statistics, 14(4), 383-397. https://doi.org/10.1007/s10651-007-0022-3
Staveley, J. P., Green, J. W., Nusz, J., Edwards, D., Henry, K., Kern, M., Deines, A. M., Brain, R., Glenn, B., Ehresman, N., Kung, T., Ralston-Hooper, K., Kee, F., & McMaster, S. (2018). Variability in nontarget terrestrial plant studies should inform endpoint selection. Integrated Environmental Assessment and Management, 14(5), 639-648. https://doi.org/10.1002/ieam.4055
Suresh Kumar, K., & Han, T. (2011). Toxicity of single and combined herbicides on PSII maximum efficiency of an aquatic higher plant, Lemna sp. Toxicology and Environmental Health Sciences, 3(2), 97-105. https://doi.org/10.1007/s13530-011-0084-3
Thomaz, S. M., & da Cunha, E. R. (2010). The role of macrophytes in habitat structuring in aquatic ecosystems: Methods of measurement, causes and consequences on animal assemblages' composition and biodiversity. Acta Limnologica Brasiliensia, 22(2), 218-236. https://doi.org/10.4322/actalb.02202011
United Kingdom. (2018). Draft renewal assessment report prepared according to the Commission Regulation (EU) N° 1107/2009-Diflufenican. https://www.efsa.europa.eu/en/consultations/call/181009
Van, T. K., Haller, W. T., & Bowes, G. (1976). Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiology, 58(6), 761-768. https://doi.org/10.1104/pp.58.6.761
van Wijngaarden, R. P. A., & Arts, G. H. P. (2018). Is the tier-1 effect assessment for herbicides protective for aquatic algae and vascular plant communities? Environmental Toxicology and Chemistry, 37(1), 175-183. https://doi.org/10.1002/etc.3936
Wendt-Rasch, L., Pirzadeh, P., & Woin, P. (2003). Effects of metsulfuron methyl and cypermethrin exposure on freshwater model ecosystems. Aquatic Toxicology, 63(3), 243-256. https://doi.org/10.1016/S0166-445X(02)00183-2
Wendt-Rasch, L., Van Den Brink, P. J., Crum, S. J. H., & Woin, P. (2004). The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: Responses of the macrophyte Myriophyllum spicatum and the periphytic algal community. Ecotoxicology and Environmental Safety, 57(3), 383-398. https://doi.org/10.1016/j.ecoenv.2003.09.010
Wieczorek, M. V., Bakanov, N., Lagadic, L., Bruns, E., & Schulz, R. (2017). Response and recovery of the macrophytes Elodea canadensis and Myriophyllum spicatum following a pulse exposure to the herbicide iofensulfuron-sodium in outdoor stream mesocosms. Environmental Toxicology and Chemistry, 36(4), 1090-1100. https://doi.org/10.1002/etc.3636

Auteurs

Abegail Fusilero (A)

GhenToxLab, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
Rotam Crop Protection Europe, Lyon, France.

Jasmine De Rop (J)

Laboratory for Crop Protection Chemistry, Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent, Belgium.

Pieter Spanoghe (P)

Laboratory for Crop Protection Chemistry, Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent, Belgium.

Gertie H P Arts (GHP)

Wageningen Environmental Research, Wageningen University and Research Centre, Wageningen, The Netherlands.

Karel A C De Schamphelaere (KAC)

GhenToxLab, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.

Articles similaires

Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal

Classifications MeSH