Coupled versus decoupled visuomotor feedback: Differential frontoparietal activity during curved reach planning on simultaneous functional near-infrared spectroscopy and electroencephalography.
EEG
fNIRS
feedback
frontoparietal cortex
reach planning
visuomotor transformation
Journal
Brain and behavior
ISSN: 2162-3279
Titre abrégé: Brain Behav
Pays: United States
ID NLM: 101570837
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
revised:
20
04
2022
received:
18
01
2022
accepted:
01
06
2022
pubmed:
15
6
2022
medline:
26
7
2022
entrez:
14
6
2022
Statut:
ppublish
Résumé
Interacting with the environment requires the planning and execution of reach-to-target movements along given reach trajectory paths. Human neural mechanisms for the motor planning of linear, or point-to-point, reaching movements are relatively well studied. However, the corresponding representations for curved and more complex reaching movements require further investigation. Additionally, the visual and proprioceptive feedback of hand positioning can be spatially and sequentially coupled in alignment (e.g., directly reaching for an object), termed coupled visuomotor feedback, or spatially decoupled (e.g., dragging the computer mouse forward to move the cursor upward), termed decoupled visuomotor feedback. During reach planning, visuomotor processing routes may differ across feedback types. We investigated the involvement of the frontoparietal regions, including the superior parietal lobule (SPL), dorsal premotor cortex (PMd), and dorsolateral prefrontal cortex (dlPFC), in curved reach planning under different feedback conditions. Participants engaged in two delayed-response reaching tasks with identical starting and target position sets but different reach trajectory paths (linear or curved) under two feedback conditions (coupled or decoupled). Neural responses in frontoparietal regions were analyzed using a combination of functional near-infrared spectroscopy and electroencephalography. The results revealed that, regarding the cue period, curved reach planning had a higher hemodynamic response in the left SPL and bilateral PMd and a smaller high-beta power in the left parietal regions than linear reach planning. Regarding the delay period, higher hemodynamic responses during curved reach planning were observed in the right dlPFC for decoupled feedback than those for coupled feedback. These findings suggest the crucial involvement of both SPL and PMd activities in trajectory-path processing for curved reach planning. Moreover, the dlPFC may be especially involved in the planning of curved reaching movements under decoupled feedback conditions. Thus, this study provides insight into the neural mechanisms underlying reaching function via different feedback conditions.
Identifiants
pubmed: 35701382
doi: 10.1002/brb3.2681
pmc: PMC9304848
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2681Informations de copyright
© 2022 The Authors. Brain and Behavior published by Wiley Periodicals LLC.
Références
Annu Rev Neurosci. 2002;25:189-220
pubmed: 12052908
Neurophotonics. 2017 Oct;4(4):041411
pubmed: 28840162
Philos Trans R Soc Lond B Biol Sci. 2000 Dec 29;355(1404):1771-88
pubmed: 11205340
J Neurophysiol. 2002 Oct;88(4):2167-71
pubmed: 12364540
Neuroimage. 2004 Apr;21(4):1275-88
pubmed: 15050555
J Neurophysiol. 2014 Jun 1;111(11):2210-21
pubmed: 24598517
PLoS One. 2018 May 16;13(5):e0196855
pubmed: 29768455
Neuron. 2011 Jan 27;69(2):387-96
pubmed: 21262474
Neuroimage. 2007 Oct 1;37(4):1338-45
pubmed: 17683949
Front Integr Neurosci. 2013 May 17;7:39
pubmed: 23730275
Neurosci Lett. 2012 Feb 6;508(2):73-7
pubmed: 22206836
Front Hum Neurosci. 2014 May 13;8:292
pubmed: 24860474
J Neurophysiol. 2015 Aug;114(2):1298-309
pubmed: 26133796
Science. 1977 Oct 21;198(4314):317-9
pubmed: 410103
Cortex. 2010 Oct;46(9):1165-77
pubmed: 20060111
Front Hum Neurosci. 2014 Jul 02;8:480
pubmed: 25071510
J Neurophysiol. 2010 Sep;104(3):1736-45
pubmed: 20660416
Exp Brain Res. 2012 Oct;222(3):255-64
pubmed: 22923223
Exp Brain Res. 2019 Jan;237(1):57-70
pubmed: 30306244
Trends Cogn Sci. 2007 Dec;11(12):528-34
pubmed: 18024183
Exp Brain Res. 2008 Jan;184(1):121-6
pubmed: 17955226
Science. 2012 Aug 24;337(6097):984-8
pubmed: 22821987
J Neurosci. 2010 Aug 25;30(34):11270-7
pubmed: 20739547
Trends Cogn Sci. 2018 Feb;22(2):170-188
pubmed: 29229206
Behav Brain Res. 2016 Feb 1;298(Pt B):229-40
pubmed: 26589804
J Neurophysiol. 2011 Jan;105(1):18-27
pubmed: 21047934
Lancet. 2012 Dec 15;380(9859):2095-128
pubmed: 23245604
Front Hum Neurosci. 2019 Sep 06;13:301
pubmed: 31555114
Front Neurosci. 2021 Aug 24;15:679408
pubmed: 34504412
Neuron. 2006 Jul 6;51(1):125-34
pubmed: 16815337
J Biomed Opt. 2011 Dec;16(12):127003
pubmed: 22191933
Hum Mov Sci. 2006 Oct;25(4-5):553-67
pubmed: 17011657
Nat Neurosci. 2005 Apr;8(4):490-7
pubmed: 15793578
J Neurophysiol. 1983 May;49(5):1230-53
pubmed: 6864248
Exp Brain Res. 2011 Feb;208(3):345-58
pubmed: 21082310
Brain Behav. 2022 Jul;12(7):e2681
pubmed: 35701382
Behav Brain Res. 2009 Mar 2;198(1):13-23
pubmed: 19061921
IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):867-76
pubmed: 25474811
Aust J Physiother. 2005;51(2):119-22
pubmed: 15924514
Brain Topogr. 2015 Sep;28(5):691-701
pubmed: 25367848
Neuroimage. 2009 Oct 1;47(4):1735-46
pubmed: 19389476
Phys Med Biol. 1988 Dec;33(12):1433-42
pubmed: 3237772
J Cogn Neurosci. 2013 Mar;25(3):436-54
pubmed: 23092356
J Neurophysiol. 2016 Aug 1;116(2):296-305
pubmed: 27098032
PLoS One. 2018 Oct 9;13(10):e0198051
pubmed: 30300356
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17075-80
pubmed: 23027946
Trends Cogn Sci. 2011 May;15(5):191-9
pubmed: 21481630
Neuroimage. 2011 Feb 14;54(4):2808-21
pubmed: 21047559
Neuroimage. 2011 Aug 1;57(3):991-1002
pubmed: 21600294
J Neurophysiol. 2013 Aug;110(4):952-63
pubmed: 23699054
Sci Rep. 2019 Feb 13;9(1):1962
pubmed: 30760821
Front Syst Neurosci. 2010 May 21;4:21
pubmed: 20577585
Front Neurosci. 2018 Mar 20;12:130
pubmed: 29615848
Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):781-95
pubmed: 15937012
Eur J Neurosci. 2006 Apr;23(7):1895-909
pubmed: 16623846
Front Neural Circuits. 2013 Oct 21;7:158
pubmed: 24155692
Annu Rev Neurosci. 2001;24:167-202
pubmed: 11283309
Child Neuropsychol. 2019 Nov;25(8):1098-1115
pubmed: 30789006
J Neurosci. 2019 Apr 24;39(17):3320-3331
pubmed: 30804087
Stroke. 2001 Jun;32(6):1279-84
pubmed: 11387487
Neuroimage. 2010 Feb 15;49(4):3039-46
pubmed: 19945536
J Neurosci. 2011 Nov 23;31(47):17149-68
pubmed: 22114283