Disease modeling by efficient genome editing using a near PAM-less base editor in vivo.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
15 06 2022
Historique:
received: 22 06 2021
accepted: 08 06 2022
entrez: 14 6 2022
pubmed: 15 6 2022
medline: 18 6 2022
Statut: epublish

Résumé

Base Editors are emerging as an innovative technology to introduce point mutations in complex genomes. So far, the requirement of an NGG Protospacer Adjacent Motif (PAM) at a suitable position often limits the base editing possibility to model human pathological mutations in animals. Here we show that, using the CBE4max-SpRY variant recognizing nearly all PAM sequences, we could introduce point mutations for the first time in an animal model with high efficiency, thus drastically increasing the base editing possibilities. With this near PAM-less base editor we could simultaneously mutate several genes and we developed a co-selection method to identify the most edited embryos based on a simple visual screening. Finally, we apply our method to create a zebrafish model for melanoma predisposition based on the simultaneous base editing of multiple genes. Altogether, our results considerably expand the Base Editor application to introduce human disease-causing mutations in zebrafish.

Identifiants

pubmed: 35701478
doi: 10.1038/s41467-022-31172-z
pii: 10.1038/s41467-022-31172-z
pmc: PMC9198099
doi:

Substances chimiques

CRISPR-Associated Protein 9 EC 3.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3435

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s).

Références

Methods. 2017 May 15;121-122:77-85
pubmed: 28300641
Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):407-12
pubmed: 15630097
Nat Biotechnol. 2014 Apr;32(4):347-55
pubmed: 24584096
Dev Cell. 2019 May 6;49(3):317-324
pubmed: 31063751
Zebrafish. 2009 Dec;6(4):397-404
pubmed: 19954345
Science. 2020 Apr 17;368(6488):290-296
pubmed: 32217751
Elife. 2021 Feb 12;10:
pubmed: 33576334
Nature. 2018 Apr 5;556(7699):57-63
pubmed: 29512652
Cells. 2020 Jul 14;9(7):
pubmed: 32674364
Front Cell Dev Biol. 2019 Jan 10;6:178
pubmed: 30687705
Nature. 2016 Apr 20;533(7603):420-4
pubmed: 27096365
Genome Biol. 2013;14(10):R113
pubmed: 24148783
Nucleic Acids Res. 2015 Nov 16;43(20):e134
pubmed: 26130722
BMC Genomics. 2020 Jan 21;21(1):67
pubmed: 31964350
Pigment Cell Melanoma Res. 2013 Mar;26(2):205-17
pubmed: 23205854
Genetics. 2014 Aug;197(4):1069-80
pubmed: 24879462
Nat Biotechnol. 2013 Mar;31(3):227-9
pubmed: 23360964
Nat Commun. 2021 Jan 21;12(1):497
pubmed: 33479216
Nat Biotechnol. 2022 Feb;40(2):189-193
pubmed: 33927418
G3 (Bethesda). 2018 Jul 31;8(8):2749-2756
pubmed: 29934375
G3 (Bethesda). 2016 Oct 13;6(10):3197-3206
pubmed: 27543296
Nucleic Acids Res. 2018 Sep 28;46(17):e102
pubmed: 29905858
Cancer Res. 2018 Nov 1;78(21):6048-6058
pubmed: 30327381
Sci Adv. 2017 Aug 30;3(8):eaao4774
pubmed: 28875174
Dis Model Mech. 2018 Sep 27;11(9):
pubmed: 30061297
Nat Commun. 2017 Jul 25;8(1):118
pubmed: 28740134
Mol Med Rep. 2012 Apr;5(4):943-8
pubmed: 22294196
Nat Biotechnol. 2018 Oct;36(9):843-846
pubmed: 29813047
Nat Methods. 2017 Jun;14(6):615-620
pubmed: 28417998
Science. 2018 Nov 30;362(6418):1055-1060
pubmed: 30385465
Elife. 2020 May 15;9:
pubmed: 32412410
BMC Biol. 2020 Dec 3;18(1):190
pubmed: 33272268
Nucleic Acids Res. 2018 Jul 2;46(W1):W242-W245
pubmed: 29762716
Nature. 2019 Dec;576(7785):149-157
pubmed: 31634902
Dis Model Mech. 2018 Oct 18;11(10):
pubmed: 30355756
Trends Cancer. 2020 May;6(5):407-418
pubmed: 32348736
Nat Commun. 2022 May 12;13(1):2601
pubmed: 35552388
Nature. 2017 Nov 23;551(7681):464-471
pubmed: 29160308
CRISPR J. 2018 Jun;1:239-250
pubmed: 31021262
Nat Neurosci. 2004 Dec;7(12):1329-36
pubmed: 15516923
Sci Rep. 2016 Jul 06;6:29490
pubmed: 27381182
PLoS One. 2010 Dec 10;5(12):e15170
pubmed: 21170325

Auteurs

Marion Rosello (M)

Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France.

Malo Serafini (M)

Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France.

Luca Mignani (L)

Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.

Dario Finazzi (D)

Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.

Carine Giovannangeli (C)

Muséum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Paris, France.

Marina C Mione (MC)

Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.

Jean-Paul Concordet (JP)

Muséum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Paris, France. jean-paul.concordet@mnhn.fr.

Filippo Del Bene (F)

Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France. filippo.del-bene@inserm.fr.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH