A pan-cancer compendium of chromosomal instability.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
06 2022
Historique:
received: 31 07 2020
accepted: 21 04 2022
pubmed: 16 6 2022
medline: 2 7 2022
entrez: 15 6 2022
Statut: ppublish

Résumé

Chromosomal instability (CIN) results in the accumulation of large-scale losses, gains and rearrangements of DNA

Identifiants

pubmed: 35705807
doi: 10.1038/s41586-022-04789-9
pii: 10.1038/s41586-022-04789-9
pmc: PMC7613102
mid: EMS150036
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

976-983

Subventions

Organisme : Cancer Research UK
ID : A11592
Pays : United Kingdom
Organisme : Wellcome Trust
ID : FC001202
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A19274
Pays : United Kingdom
Organisme : Arthritis Research UK
ID : FC001202
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A22905
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Cancer Research UK
ID : FC001202
Pays : United Kingdom
Organisme : Medical Research Council
ID : FC001202
Pays : United Kingdom
Organisme : Wellcome Trust
ID : RG92770
Pays : United Kingdom

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).
pubmed: 30193109 pmcid: 6136429 doi: 10.1016/j.cell.2018.08.027
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230 doi: 10.1016/j.cell.2011.02.013
Tijhuis, A. E., Johnson, S. C. & McClelland, S. E. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol. Cytogenet. 12, 17 (2019).
pubmed: 31114634 pmcid: 6518824 doi: 10.1186/s13039-019-0429-1
Chakravarti, D., LaBella, K. A. & DePinho, R. A. Telomeres: history, health, and hallmarks of aging. Cell 184, 306–322 (2021).
pubmed: 33450206 pmcid: 8081271 doi: 10.1016/j.cell.2020.12.028
Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).
pubmed: 29342134 pmcid: 5785464 doi: 10.1038/nature25432
Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017).
pubmed: 28288110 pmcid: 5833945 doi: 10.1038/nm.4292
Cohen-Sharir, Y. et al. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 590, 486–491 (2021).
pubmed: 33505028 pmcid: 8262644 doi: 10.1038/s41586-020-03114-6
Macintyre, G. et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat. Genet. 50, 1262–1270 (2018).
pubmed: 30104763 pmcid: 6130818 doi: 10.1038/s41588-018-0179-8
Steele, C. D. et al. Undifferentiated sarcomas develop through distinct evolutionary pathways. Cancer Cell 35, 441–456.e8 (2019).
pubmed: 30889380 pmcid: 6428691 doi: 10.1016/j.ccell.2019.02.002
Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).
pubmed: 31548659 doi: 10.1038/s41576-019-0171-x
Stok, C., Kok, Y. P., van den Tempel, N. & van Vugt, M. A. T. M. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Res. 49, 4239–4257 (2021).
pubmed: 33744950 pmcid: 8096281 doi: 10.1093/nar/gkab151
Takemon, Y. et al. Multi-omic analyses reveal a role for mammalian CIC in cell cycle regulation and mitotic fidelity Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/533323v2 (2019).
Hell, M. P., Duda, M., Weber, T. C., Moch, H. & Krek, W. Tumor suppressor VHL functions in the control of mitotic fidelity. Cancer Res. 74, 2422–2431 (2014).
pubmed: 24362914 doi: 10.1158/0008-5472.CAN-13-2040
Brownlee, P. M., Chambers, A. L., Cloney, R., Bianchi, A. & Downs, J. A. BAF180 promotes cohesion and prevents genome instability and aneuploidy. Cell Rep. 6, 973–981 (2014).
pubmed: 24613357 pmcid: 3988838 doi: 10.1016/j.celrep.2014.02.012
Silverman, J. S., Skaar, J. R. & Pagano, M. SCF ubiquitin ligases in the maintenance of genome stability. Trends Biochem. Sci. 37, 66–73 (2012).
pubmed: 22099186 doi: 10.1016/j.tibs.2011.10.004
Godinho, S. A. & Pellman, D. Causes and consequences of centrosome abnormalities in cancer. Phil. Trans. R. Soc. B 369, 20130467 (2014).
pubmed: 25047621 pmcid: 4113111 doi: 10.1098/rstb.2013.0467
Menghi, F. et al. The tandem duplicator phenotype is a prevalent genome-wide cancer configuration driven by distinct gene mutations. Cancer Cell 34, 197–210.e5 (2018).
pubmed: 30017478 pmcid: 6481635 doi: 10.1016/j.ccell.2018.06.008
Abkevich, V. et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br. J. Cancer 107, 1776–1782 (2012).
pubmed: 23047548 pmcid: 3493866 doi: 10.1038/bjc.2012.451
Popova, T. et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 72, 5454–5462 (2012).
pubmed: 22933060 doi: 10.1158/0008-5472.CAN-12-1470
The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).
pmcid: 3163504 doi: 10.1038/nature10166
Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).
pubmed: 27135926 pmcid: 4910866 doi: 10.1038/nature17676
Ogden, A., Rida, P. C. G. & Aneja, R. Prognostic value of CA20, a score based on centrosome amplification-associated genes, in breast tumors. Sci Rep. 7, 262 (2017).
pubmed: 28325915 pmcid: 5428291 doi: 10.1038/s41598-017-00363-w
Piazza, A. & Heyer, W.-D. Homologous recombination and the formation of complex genomic rearrangements. Trends Cell Biol. 29, 135–149 (2019).
pubmed: 30497856 doi: 10.1016/j.tcb.2018.10.006
Guirouilh-Barbat, J., Lambert, S., Bertrand, P. & Lopez, B. S. Is homologous recombination really an error-free process? Front. Genet. 5, 175 (2014).
pubmed: 24966870 pmcid: 4052342 doi: 10.3389/fgene.2014.00175
Knijnenburg, T. A. et al. Genomic and molecular landscape of dna damage repair deficiency across The Cancer Genome Atlas. Cell Rep. 23, 239–254.e6 (2018).
pubmed: 29617664 pmcid: 5961503 doi: 10.1016/j.celrep.2018.03.076
Saavedra, H. I., Fukasawa, K., Conn, C. W. & Stambrook, P. J. MAPK mediates RAS-induced chromosome instability. J. Biol. Chem. 274, 38083–38090 (1999).
pubmed: 10608877 doi: 10.1074/jbc.274.53.38083
Perl, A. L. et al. Protein phosphatase 2A controls ongoing DNA replication by binding to and regulating cell division cycle 45 (CDC45). J. Biol. Chem. 294, 17043–17059 (2019).
pubmed: 31562245 pmcid: 6851307 doi: 10.1074/jbc.RA119.010432
Chen, L. et al. The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol. Cell 69, 412–425.e6 (2018).
pubmed: 29395063 pmcid: 5957072 doi: 10.1016/j.molcel.2017.12.029
Li, Q. et al. ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle-invasive bladder cancer. Clin. Cancer Res. 25, 977–988 (2019).
pubmed: 29980530 doi: 10.1158/1078-0432.CCR-18-1001
Menon, V. & Povirk, L. Involvement of p53 in the repair of DNA double strand breaks: multifaceted roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Subcell. Biochem. 85, 321–336 (2014).
pubmed: 25201202 pmcid: 4235614 doi: 10.1007/978-94-017-9211-0_17
Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254.e39 (2021).
pubmed: 33831375 pmcid: 8054914 doi: 10.1016/j.cell.2021.03.009
Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4, 175–185 (2014).
pubmed: 24436049 pmcid: 4293454 doi: 10.1158/2159-8290.CD-13-0285
Davoli, T. & de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011).
pubmed: 21801013 doi: 10.1146/annurev-cellbio-092910-154234
Berenjeno, I. M. et al. Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling. Nat. Commun. 8, 1773 (2017).
pubmed: 29170395 pmcid: 5701070 doi: 10.1038/s41467-017-02002-4
Darp, R., Vittoria, M. A., Ganem, N. J. & Ceol, C. J. Oncogenic BRAF induces whole-genome doubling through suppression of cytokinesis. Preprint at bioRxiv https://doi.org/10.1101/2021.04.08.439023 (2021).
Zhang, Q. et al. FBXW7 facilitates nonhomologous end-joining via K63-linked polyubiquitylation of XRCC4. Mol. Cell 61, 419–433 (2016).
pubmed: 26774286 pmcid: 4744117 doi: 10.1016/j.molcel.2015.12.010
Citri, A., Skaria, K. B. & Yarden, Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp. Cell Res. 284, 54–65 (2003).
pubmed: 12648465 doi: 10.1016/S0014-4827(02)00101-5
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018 pmcid: 7054213 doi: 10.1038/s41586-020-1943-3
Venkatesan, S. et al. Induction of APOBEC3 exacerbates DNA replication stress and chromosomal instability in early breast and lung cancer evolution. Cancer Discov. 11, 2456–2473 (2021).
pubmed: 33947663 pmcid: 8487921 doi: 10.1158/2159-8290.CD-20-0725
Crockford, A. et al. Cyclin D mediates tolerance of genome-doubling in cancers with functional p53. Ann. Oncol. 28, 149–156 (2017).
pubmed: 28177473 doi: 10.1093/annonc/mdw612
Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).
pubmed: 28676700 pmcid: 6591728 doi: 10.1038/nrm.2017.53
Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).
pubmed: 28813415 pmcid: 5570667 doi: 10.1038/nature23465
Brownlee, P. M., Meisenberg, C. & Downs, J. A. The SWI/SNF chromatin remodelling complex: Its role in maintaining genome stability and preventing tumourigenesis. DNA Repair 32, 127–133 (2015).
pubmed: 25981841 doi: 10.1016/j.dnarep.2015.04.023
Kops, G. J. P., Foltz, D. R. & Cleveland, D. W. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc. Natl Acad. Sci. USA 101, 8699–8704 (2004).
pubmed: 15159543 pmcid: 423258 doi: 10.1073/pnas.0401142101
Quinton, R. J. et al. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature 590, 492–497 (2021).
pubmed: 33505027 pmcid: 7889737 doi: 10.1038/s41586-020-03133-3
Janssen, A., Kops, G. J. P. L. & Medema, R. H. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc. Natl Acad. Sci. USA 106, 19108–19113 (2009).
pubmed: 19855003 pmcid: 2776415 doi: 10.1073/pnas.0904343106
Datta, D. et al. Nucleolar GTP-binding protein-1 (NGP-1) promotes G1 to S phase transition by activating cyclin-dependent kinase inhibitor p21 Cip1/Waf1. J. Biol. Chem. 290, 21536–21552 (2015).
pubmed: 26203195 pmcid: 4571879 doi: 10.1074/jbc.M115.637280
Martin, L. P., Hamilton, T. C. & Schilder, R. J. Platinum resistance: the role of DNA repair pathways. Clin. Cancer Res. 14, 1291–1295 (2008).
pubmed: 18316546 doi: 10.1158/1078-0432.CCR-07-2238
Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).
pubmed: 24071852 pmcid: 3966983 doi: 10.1038/ng.2760
Scheinin, I. et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res. 24, 2022–2032 (2014).
pubmed: 25236618 pmcid: 4248318 doi: 10.1101/gr.175141.114

Auteurs

Ruben M Drews (RM)

Cancer Research UK Cambridge Institute, Cambridge, UK.

Barbara Hernando (B)

Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

Maxime Tarabichi (M)

The Francis Crick Institute, London, UK.
Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.

Kerstin Haase (K)

The Francis Crick Institute, London, UK.
Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.

Tom Lesluyes (T)

The Francis Crick Institute, London, UK.

Philip S Smith (PS)

Cancer Research UK Cambridge Institute, Cambridge, UK.

Lena Morrill Gavarró (L)

Cancer Research UK Cambridge Institute, Cambridge, UK.

Dominique-Laurent Couturier (DL)

Cancer Research UK Cambridge Institute, Cambridge, UK.
Medical Research Council Biostatistics Unit, Cambridge, UK.

Lydia Liu (L)

The Francis Crick Institute, London, UK.
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.

Michael Schneider (M)

Cancer Research UK Cambridge Institute, Cambridge, UK.

James D Brenton (JD)

Cancer Research UK Cambridge Institute, Cambridge, UK.
Addenbrooke's Hospital, Cambridge, UK.
Department of Oncology, University of Cambridge, Cambridge, UK.

Peter Van Loo (P)

The Francis Crick Institute, London, UK.

Geoff Macintyre (G)

Cancer Research UK Cambridge Institute, Cambridge, UK. gmacintyre@cnio.es.
Spanish National Cancer Research Centre (CNIO), Madrid, Spain. gmacintyre@cnio.es.

Florian Markowetz (F)

Cancer Research UK Cambridge Institute, Cambridge, UK. florian.markowetz@cruk.cam.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH