Cerebellar dopamine D2 receptors regulate social behaviors.
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
08
01
2020
accepted:
10
05
2022
pubmed:
18
6
2022
medline:
15
7
2022
entrez:
17
6
2022
Statut:
ppublish
Résumé
The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.
Identifiants
pubmed: 35710984
doi: 10.1038/s41593-022-01092-8
pii: 10.1038/s41593-022-01092-8
doi:
Substances chimiques
Receptors, Dopamine D1
0
Receptors, Dopamine D2
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
900-911Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Ito, M. Mechanisms of motor learning in the cerebellum. Brain Res. 886, 237–245 (2000).
pubmed: 11119699
doi: 10.1016/S0006-8993(00)03142-5
Medina, J. F., Nores, W. L., Ohyama, T. & Mauk, M. D. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr. Opin. Neurobiol. 10, 717–724 (2000).
pubmed: 11240280
doi: 10.1016/S0959-4388(00)00154-9
Carta, I., Chen, C. H., Schott, A. L., Dorizan, S. & Khodakhah, K. Cerebellar modulation of the reward circuitry and social behavior. Science https://doi.org/10.1126/science.aav0581 (2019).
Locke, T. M. et al. Purkinje cell-specific knockout of tyrosine hydroxylase impairs cognitive behaviors. Front. Cell. Neurosci. 14, 228 (2020).
pubmed: 32848620
pmcid: 7403473
doi: 10.3389/fncel.2020.00228
Locke, T. M. et al. Dopamine D1 receptor-positive neurons in the lateral nucleus of the cerebellum contribute to cognitive behavior. Biol. Psychiatry 84, 401–412 (2018).
pubmed: 29478701
pmcid: 6072628
doi: 10.1016/j.biopsych.2018.01.019
Schmahmann, J. D. & Caplan, D. Cognition, emotion and the cerebellum. Brain 129, 290–292 (2006).
pubmed: 16434422
doi: 10.1093/brain/awh729
Ruigrok, T. J. Ins and outs of cerebellar modules. Cerebellum 10, 464–474 (2011).
pubmed: 20232190
doi: 10.1007/s12311-010-0164-y
Schweighofer, N., Doya, K. & Kuroda, S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res. Brain Res. Rev. 44, 103–116 (2004).
pubmed: 15003388
doi: 10.1016/j.brainresrev.2003.10.004
Nelson, T. E., King, J. S. & Bishop, G. A. Distribution of tyrosine hydroxylase-immunoreactive afferents to the cerebellum differs between species. J. Comp. Neurol. 379, 443–454 (1997).
pubmed: 9067835
doi: 10.1002/(SICI)1096-9861(19970317)379:3<443::AID-CNE9>3.0.CO;2-3
Cutando, L. et al. Regulation of GluA1 phosphorylation by d-amphetamine and methylphenidate in the cerebellum. Addict. Biol. 26, e12995 (2021).
pubmed: 33368923
doi: 10.1111/adb.12995
Ikai, Y., Takada, M. & Mizuno, N. Single neurons in the ventral tegmental area that project to both the cerebral and cerebellar cortical areas by way of axon collaterals. Neuroscience 61, 925–934 (1994).
pubmed: 7838388
doi: 10.1016/0306-4522(94)90413-8
Ikai, Y., Takada, M., Shinonaga, Y. & Mizuno, N. Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience 51, 719–728 (1992).
pubmed: 1362601
doi: 10.1016/0306-4522(92)90310-X
Panagopoulos, N. T., Papadopoulos, G. C. & Matsokis, N. A. Dopaminergic innervation and binding in the rat cerebellum. Neurosci. Lett. 130, 208–212 (1991).
pubmed: 1795884
doi: 10.1016/0304-3940(91)90398-D
Barili, P., Bronzetti, E., Ricci, A., Zaccheo, D. & Amenta, F. Microanatomical localization of dopamine receptor protein immunoreactivity in the rat cerebellar cortex. Brain Res. 854, 130–138 (2000).
pubmed: 10784114
doi: 10.1016/S0006-8993(99)02306-9
Bouthenet, M. L., Martres, M. P., Sales, N. & Schwartz, J. C. A detailed mapping of dopamine D2 receptors in rat central nervous system by autoradiography with [125I]iodosulpride. Neuroscience 20, 117–155 (1987).
pubmed: 2882443
doi: 10.1016/0306-4522(87)90008-X
Boyson, S. J., McGonigle, P. & Molinoff, P. B. Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J. Neurosci. 6, 3177–3188 (1986).
pubmed: 3534157
pmcid: 6568493
doi: 10.1523/JNEUROSCI.06-11-03177.1986
Camps, M., Kelly, P. H. & Palacios, J. M. Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species. J. Neural Transm. Gen. Sect. 80, 105–127 (1990).
pubmed: 2138461
doi: 10.1007/BF01257077
Flace, P. et al. The cerebellar dopaminergic system. Front. Syst. Neurosci. 15, 650614 (2021).
pubmed: 34421548
pmcid: 8375553
doi: 10.3389/fnsys.2021.650614
Mengod, G., Martinez-Mir, M. I., Vilaro, M. T. & Palacios, J. M. Localization of the mRNA for the dopamine D2 receptor in the rat brain by in situ hybridization histochemistry. Proc. Natl Acad. Sci. USA 86, 8560–8564 (1989).
pubmed: 2530584
pmcid: 298322
doi: 10.1073/pnas.86.21.8560
Eisenstein, S. A. et al. Characterization of extrastriatal D2 in vivo specific binding of [
pubmed: 22535514
pmcid: 3389593
doi: 10.1002/syn.21566
Matuskey, D. et al. Age-related changes in binding of the D2/3 receptor radioligand [
pubmed: 26876475
doi: 10.1016/j.neuroimage.2016.02.002
Andreasen, N. C. & Pierson, R. The role of the cerebellum in schizophrenia. Biol. Psychiatry 64, 81–88 (2008).
pubmed: 18395701
pmcid: 3175494
doi: 10.1016/j.biopsych.2008.01.003
Baldacara, L. et al. Is cerebellar volume related to bipolar disorder? J. Affect. Disord. 135, 305–309 (2011).
pubmed: 21783257
doi: 10.1016/j.jad.2011.06.059
Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R. & Jernigan, T. L. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N. Engl. J. Med. 318, 1349–1354 (1988).
pubmed: 3367935
doi: 10.1056/NEJM198805263182102
D’Mello, A. M. & Stoodley, C. J. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 9, 408 (2015).
pubmed: 26594140
pmcid: 4633503
Murakami, J. W., Courchesne, E., Press, G. A., Yeung-Courchesne, R. & Hesselink, J. R. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch. Neurol. 46, 689–694 (1989).
pubmed: 2730382
doi: 10.1001/archneur.1989.00520420111032
Webb, S. J. et al. Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res. 172, 61–67 (2009).
pubmed: 19243924
pmcid: 2676721
doi: 10.1016/j.pscychresns.2008.06.001
Gangarossa, G. et al. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus 22, 2199–2207 (2012).
pubmed: 22777829
doi: 10.1002/hipo.22044
Puighermanal, E. et al. drd2-cre:ribotag mouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus 25, 858–875 (2015).
pubmed: 25545461
doi: 10.1002/hipo.22408
Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).
pubmed: 25417164
doi: 10.1016/j.cell.2014.10.010
Puighermanal, E. et al. Functional and molecular heterogeneity of D2R neurons along dorsal ventral axis in the striatum. Nat. Commun. 11, 1957 (2020).
pubmed: 32327644
pmcid: 7181842
doi: 10.1038/s41467-020-15716-9
Gall, D. et al. Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J. Neurosci. 23, 9320–9327 (2003).
pubmed: 14561859
pmcid: 6740583
doi: 10.1523/JNEUROSCI.23-28-09320.2003
McDonough, A. et al. Unipolar (dendritic) brush cells are morphologically complex and require Tbr2 for differentiation and migration. Front Neurosci. 14, 598548 (2020).
pubmed: 33488348
doi: 10.3389/fnins.2020.598548
Schilling, K. & Oberdick, J. The treasury of the commons: making use of public gene expression resources to better characterize the molecular diversity of inhibitory interneurons in the cerebellar cortex. Cerebellum 8, 477–489 (2009).
pubmed: 19554387
doi: 10.1007/s12311-009-0124-6
Dal Toso, R. et al. The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J. 8, 4025–4034 (1989).
pubmed: 2531656
pmcid: 401577
doi: 10.1002/j.1460-2075.1989.tb08585.x
De Mei, C., Ramos, M., Iitaka, C. & Borrelli, E. Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr. Opin. Pharmacol. 9, 53–58 (2009).
pubmed: 19138563
pmcid: 2710814
doi: 10.1016/j.coph.2008.12.002
Montmayeur, J. P. et al. Differential expression of the mouse D2 dopamine receptor isoforms. FEBS Lett. 278, 239–243 (1991).
pubmed: 1991517
doi: 10.1016/0014-5793(91)80125-M
Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235 (2007).
pubmed: 17408758
doi: 10.1016/j.tins.2007.03.008
Chung, H. J., Steinberg, J. P., Huganir, R. L. & Linden, D. J. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300, 1751–1755 (2003).
pubmed: 12805550
doi: 10.1126/science.1082915
Steinberg, J. P. et al. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 49, 845–860 (2006).
pubmed: 16543133
doi: 10.1016/j.neuron.2006.02.025
de Leeuw, C. N. et al. rAAV-compatible MiniPromoters for restricted expression in the brain and eye. Mol. Brain 9, 52 (2016).
pubmed: 27164903
pmcid: 4862195
doi: 10.1186/s13041-016-0232-4
Broekman, M. L., Comer, L. A., Hyman, B. T. & Sena-Esteves, M. Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or -2 serotypes for widespread gene delivery to the neonatal mouse brain. Neuroscience 138, 501–510 (2006).
pubmed: 16414198
doi: 10.1016/j.neuroscience.2005.11.057
Yang, M., Silverman, J. L. & Crawley, J. N. Automated three-chambered social approach task for mice. Curr. Protoc. Neurosci. https://doi.org/10.1002/0471142301.ns0826s56 (2011).
Stoodley, C. J. et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat. Neurosci. 20, 1744–1751 (2017).
pubmed: 29184200
pmcid: 5867894
doi: 10.1038/s41593-017-0004-1
Guell, X., Gabrieli, J. D. E. & Schmahmann, J. D. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage 172, 437–449 (2018).
pubmed: 29408539
doi: 10.1016/j.neuroimage.2018.01.082
Guell, X., Schmahmann, J. D., Gabrieli, J. & Ghosh, S. S. Functional gradients of the cerebellum. Elife https://doi.org/10.7554/eLife.36652 (2018).
Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).
pubmed: 21795627
pmcid: 3214121
doi: 10.1152/jn.00339.2011
Gehlert, D. R. & Wamsley, J. K. Dopamine receptors in the rat brain: quantitative autoradiographic localization using [
pubmed: 20492979
doi: 10.1016/0197-0186(85)90070-1
Martres, M. P., Sales, N., Bouthenet, M. L. & Schwartz, J. C. Localisation and pharmacological characterisation of D2 dopamine receptors in rat cerebral neocortex and cerebellum using [125I]iodosulpride. Eur. J. Pharmacol. 118, 211–219 (1985).
pubmed: 2935411
doi: 10.1016/0014-2999(85)90131-1
Bouthenet, M. L. et al. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 564, 203–219 (1991).
pubmed: 1839781
doi: 10.1016/0006-8993(91)91456-B
Mansour, A. et al. Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiographic analysis. J. Neurosci. 10, 2587–2600 (1990).
pubmed: 2143777
pmcid: 6570265
doi: 10.1523/JNEUROSCI.10-08-02587.1990
Meador-Woodruff, J. H. et al. Distribution of D2 dopamine receptor mRNA in rat brain. Proc. Natl Acad. Sci. USA 86, 7625–7628 (1989).
pubmed: 2529545
pmcid: 298119
doi: 10.1073/pnas.86.19.7625
Brock, J. W., Farooqui, S., Ross, K. & Prasad, C. Localization of dopamine D2 receptor protein in rat brain using polyclonal antibody. Brain Res. 578, 244–250 (1992).
pubmed: 1387335
doi: 10.1016/0006-8993(92)90253-6
Khan, Z. U. et al. Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J. Comp. Neurol. 402, 353–371 (1998).
pubmed: 9853904
doi: 10.1002/(SICI)1096-9861(19981221)402:3<353::AID-CNE5>3.0.CO;2-4
Levey, A. I. et al. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl Acad. Sci. USA 90, 8861–8865 (1993).
pubmed: 8415621
pmcid: 47460
doi: 10.1073/pnas.90.19.8861
Kim, Y. S., Shin, J. H., Hall, F. S. & Linden, D. J. Dopamine signaling is required for depolarization-induced slow current in cerebellar Purkinje cells. J. Neurosci. 29, 8530–8538 (2009).
pubmed: 19571144
pmcid: 2720617
doi: 10.1523/JNEUROSCI.0468-09.2009
Kelly, M. A. et al. Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J. Neurosci. 18, 3470–3479 (1998).
pubmed: 9547254
pmcid: 6792649
doi: 10.1523/JNEUROSCI.18-09-03470.1998
Radl, D. et al. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms. Proc. Natl Acad. Sci. USA 115, 198–203 (2018).
pubmed: 29255027
doi: 10.1073/pnas.1717194115
Neve, K. A. et al. Normalizing dopamine D2 receptor-mediated responses in D2 null mutant mice by virus-mediated receptor restoration: comparing D2L and D2S. Neuroscience 248, 479–487 (2013).
pubmed: 23811070
doi: 10.1016/j.neuroscience.2013.06.035
Bolbecker, A. R. et al. Eye-blink conditioning anomalies in bipolar disorder suggest cerebellar dysfunction. Bipolar Disord. 11, 19–32 (2009).
pubmed: 19133963
doi: 10.1111/j.1399-5618.2008.00642.x
Bolbecker, A. R. et al. Eye-blink conditioning deficits indicate temporal processing abnormalities in schizophrenia. Schizophr. Res 111, 182–191 (2009).
pubmed: 19351577
pmcid: 2702657
doi: 10.1016/j.schres.2009.03.016
Millan, M. J. et al. Selective blockade of dopamine D3 versus D2 receptors enhances frontocortical cholinergic transmission and social memory in rats: a parallel neurochemical and behavioural analysis. J. Neurochem. 100, 1047–1061 (2007).
pubmed: 17266737
doi: 10.1111/j.1471-4159.2006.04262.x
Watson, D. J. et al. Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. Neuropsychopharmacology 37, 770–786 (2012).
pubmed: 22030711
doi: 10.1038/npp.2011.254
Loiseau, F. & Millan, M. J. Blockade of dopamine D3 receptors in frontal cortex, but not in sub-cortical structures, enhances social recognition in rats: similar actions of D1 receptor agonists, but not of D2 antagonists. Eur. Neuropsychopharmacol. 19, 23–33 (2009).
pubmed: 18793829
doi: 10.1016/j.euroneuro.2008.07.012
Bariselli, S. et al. Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nat. Commun. 9, 3173 (2018).
pubmed: 30093665
pmcid: 6085391
doi: 10.1038/s41467-018-05382-3
Fields, H. L., Hjelmstad, G. O., Margolis, E. B. & Nicola, S. M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu. Rev. Neurosci. 30, 289–316 (2007).
pubmed: 17376009
doi: 10.1146/annurev.neuro.30.051606.094341
Gunaydin, L. A. & Deisseroth, K. Dopaminergic dynamics contributing to social behavior. Cold Spring Harb. Symp. Quant. Biol. 79, 221–227 (2014).
pubmed: 25943769
doi: 10.1101/sqb.2014.79.024711
Prévost-Solié, C. et al. Superior colliculus to VTA pathway controls orienting response to conspecific stimuli. Nat. Commun. 13, 817 (2022).
doi: 10.1038/s41467-022-28512-4
Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J. & Luo, L. Cerebellar granule cells encode the expectation of reward. Nature 544, 96–100 (2017).
pubmed: 28321129
pmcid: 5532014
doi: 10.1038/nature21726
Hess, E. J. & Wilson, M. C. Tottering and leaner mutations perturb transient developmental expression of tyrosine hydroxylase in embryologically distinct Purkinje cells. Neuron 6, 123–132 (1991).
pubmed: 1670919
doi: 10.1016/0896-6273(91)90127-L
Jeong, Y. G., Kim, M. K. & Hawkes, R. Ectopic expression of tyrosine hydroxylase in zebrin II immunoreactive Purkinje cells in the cerebellum of the ataxic mutant mouse, pogo. Brain Res. Dev. Brain Res. 129, 201–209 (2001).
pubmed: 11506864
doi: 10.1016/S0165-3806(01)00212-7
Kempadoo, K. A., Mosharov, E. V., Choi, S. J., Sulzer, D. & Kandel, E. R. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl Acad. Sci. USA 113, 14835–14840 (2016).
pubmed: 27930324
pmcid: 5187750
doi: 10.1073/pnas.1616515114
Beas, B. S. et al. The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism. Nat. Neurosci. 21, 963–973 (2018).
pubmed: 29915192
pmcid: 6035776
doi: 10.1038/s41593-018-0167-4
Candelas, M. et al. Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Sci. Rep. 9, 3112 (2019).
pubmed: 30816223
pmcid: 6395820
doi: 10.1038/s41598-019-39703-3
Biever, A. et al. PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons. J. Neurosci. 35, 4113–4130 (2015).
pubmed: 25762659
pmcid: 6605295
doi: 10.1523/JNEUROSCI.3288-14.2015
Franklin, K. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates. 3rd edn, 256 (Academic Press, 2008).
Ceolin, L. et al. Cell-type-specific mRNA dysregulation in hippocampal CA1 pyramidal neurons of the fragile X syndrome mouse model. Front. Mol. Neurosci. 10, 340 (2017).
pubmed: 29104533
pmcid: 5655025
doi: 10.3389/fnmol.2017.00340
Saywell, V., Cioni, J. M. & Ango, F. Developmental gene expression profile of axon guidance cues in Purkinje cells during cerebellar circuit formation. Cerebellum 13, 307–317 (2014).
pubmed: 24550128
doi: 10.1007/s12311-014-0548-5
Belle, M. et al. Tridimensional visualization and analysis of early human development. Cell 169, 161–173 (2017).
pubmed: 28340341
doi: 10.1016/j.cell.2017.03.008
Cutando, L. et al. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J. Clin. Invest. 123, 2816–2831 (2013).
pubmed: 23934130
pmcid: 3696568
doi: 10.1172/JCI67569
Bruinsma, C. F. et al. An essential role for UBE2A/HR6A in learning and memory and mGLUR-dependent long-term depression. Hum. Mol. Genet 25, 1–8 (2016).
pubmed: 26476408
doi: 10.1093/hmg/ddv436
Galliano, E. et al. Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks. J. Neurosci. 33, 12599–12618 (2013).
pubmed: 23904597
pmcid: 6618544
doi: 10.1523/JNEUROSCI.1642-13.2013
Martinez-Torres, S. et al. Monoacylglycerol lipase blockade impairs fine motor coordination and triggers cerebellar neuroinflammation through cyclooxygenase 2. Brain Behav. Immun. 81, 399–409 (2019).
pubmed: 31251974
doi: 10.1016/j.bbi.2019.06.036
Moy, S. S. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 3, 287–302 (2004).
pubmed: 15344922
doi: 10.1111/j.1601-1848.2004.00076.x