Dynamic Changes of Brain Activity in Patients With Disorders of Consciousness During Recovery of Consciousness.
disorders of consciousness
dynamics of brain activity
electroencephalogram (EEG)
high-definition transcranial direct-current stimulation
microstate
Journal
Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481
Informations de publication
Date de publication:
2022
2022
Historique:
received:
18
02
2022
accepted:
10
05
2022
entrez:
20
6
2022
pubmed:
21
6
2022
medline:
21
6
2022
Statut:
epublish
Résumé
The disorder of brain activity dynamics is one of the main characteristics leading to disorders of consciousness (DOC). However, few studies have explored whether the dynamics of brain activity can be modulated, and whether the dynamics of brain activity can help to evaluate the state of consciousness and the recovery progress of consciousness. In current study, 20 patients with minimally conscious state (MCS) and 13 patients with vegetative state (VS) were enrolled, and resting state electroencephalogram (EEG) data and the coma recovery scale-revised (CRS-R) scores were collected three times before and after high-definition transcranial direct current stimulation (HD-tDCS) treatment. The patients were divided into the improved group and the unimproved group according to whether the CRS-R scores were improved after the treatment, and the dynamic changes of resting state EEG microstate parameters during treatment were analyzed. The results showed the occurrence per second (OPS) of microstate D was significantly different between the MCS group and VS group, and it was positively correlated with the CRS-R before the treatment. After 2 weeks of the treatment, the OPS of microstate D improved significantly in the improved group. Meanwhile, the mean microstate duration (MMD), ratio of time coverage (Cov) of microstate C and the Cov of microstate D were significantly changed after the treatment. Compared with the microstates parameters before the treatment, the dynamic changes of parameters with significant difference in the improved group showed a consistent trend after the treatment. In contrast, the microstates parameters did not change significantly after the treatment in the unimproved group. The results suggest that the dynamics of EEG brain activity can be modulated by HD-tDCS, and the improvement in brain activity dynamics is closely related to the recovery of DOC, which is helpful to evaluate the level of DOC and the progress of recovery of consciousness.
Identifiants
pubmed: 35720697
doi: 10.3389/fnins.2022.878203
pmc: PMC9201077
doi:
Types de publication
Journal Article
Langues
eng
Pagination
878203Informations de copyright
Copyright © 2022 Guo, Li, Zhang, Liu, Zhang, Zhao, Shan, Wang and Hu.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Front Neurosci. 2018 Oct 15;12:714
pubmed: 30374285
Electroencephalogr Clin Neurophysiol. 1989 Dec;73(6):507-19
pubmed: 2480885
Aging Dis. 2020 Mar 9;11(2):301-314
pubmed: 32257543
Front Neurosci. 2019 Apr 30;13:412
pubmed: 31114475
Aging Dis. 2021 Apr 1;12(2):386-403
pubmed: 33815872
Eur Arch Psychiatry Clin Neurosci. 1999;249(4):205-11
pubmed: 10449596
Front Hum Neurosci. 2020 Sep 23;14:560586
pubmed: 33100996
Brain. 2017 Aug 1;140(8):2120-2132
pubmed: 28666351
Lancet Neurol. 2016 Jul;15(8):830-842
pubmed: 27131917
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1353-62
pubmed: 25737555
Lancet. 2000 May 20;355(9217):1790-1
pubmed: 10832834
Nat Rev Neurosci. 2011 Jan;12(1):43-56
pubmed: 21170073
N Engl J Med. 2010 May 20;362(20):1937; author reply 1937-8
pubmed: 20496462
Neuroimage Clin. 2016 Aug 09;12:466-77
pubmed: 27625987
Ann Neurol. 2016 Nov;80(5):718-729
pubmed: 27717082
Neuropsychobiology. 2006;54(2):134-9
pubmed: 17199099
Audiol Neurootol. 2011;16(3):145-57
pubmed: 20668375
Nat Rev Neurol. 2014 Feb;10(2):99-114
pubmed: 24468878
Brain Topogr. 2018 Sep;31(5):848-862
pubmed: 29666960
Neuron. 2011 Apr 28;70(2):200-27
pubmed: 21521609
Lancet. 2014 Aug 9;384(9942):514-22
pubmed: 24746174
Brain Topogr. 2012 Jan;25(1):20-6
pubmed: 21644026
Clin Neurophysiol. 2003 Nov;114(11):2043-51
pubmed: 14580602
Neuron. 2019 May 8;102(3):526-528
pubmed: 31071287
Neuropsychologia. 2012 Feb;50(3):403-18
pubmed: 22230230
Brain. 2014 Aug;137(Pt 8):2258-70
pubmed: 24919971
Clin Neurophysiol. 2013 Jun;124(6):1106-14
pubmed: 23403263
Neuroimage. 2012 May 1;60(4):2062-72
pubmed: 22381593
Neurosci Biobehav Rev. 2015 Feb;49:105-13
pubmed: 25526823
Brain Inj. 2019;33(11):1409-1412
pubmed: 31319707
Clin Neurophysiol. 2011 Jun;122(6):1073-4
pubmed: 21126907
Schizophr Res Cogn. 2015 May 27;2(3):159-165
pubmed: 29379765
Brain. 2019 Jun 1;142(6):1767-1782
pubmed: 30938426
Schizophr Res. 2018 Mar;193:451-452
pubmed: 28673751
J Neurosci. 2015 Sep 16;35(37):12932-46
pubmed: 26377477
Psychiatry Res. 2005 Feb 28;138(2):141-56
pubmed: 15766637
Clin Neurophysiol. 2011 Nov;122(11):2157-68
pubmed: 21514214
Schizophr Res. 2014 Feb;152(2-3):513-20
pubmed: 24389056
Neuroimage. 2002 May;16(1):41-8
pubmed: 11969316
Schizophr Res. 2007 Dec;97(1-3):163-72
pubmed: 17703921
Nat Neurosci. 2020 Jun;23(6):761-770
pubmed: 32451482
Electroencephalogr Clin Neurophysiol. 1987 Sep;67(3):271-88
pubmed: 2441961
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):887-92
pubmed: 25561541
Electroencephalogr Clin Neurophysiol. 1998 Jun;106(6):535-46
pubmed: 9741753
Sci Adv. 2019 Feb 06;5(2):eaat7603
pubmed: 30775433
Neuroimage. 2010 Oct 1;52(4):1162-70
pubmed: 20188188
Neuroimage. 2018 Oct 15;180(Pt B):577-593
pubmed: 29196270
Neuroimage. 2010 Jan 1;49(1):1073-9
pubmed: 19646538
Science. 2006 Sep 8;313(5792):1402
pubmed: 16959998