Engineering a highly sensitive biosensor for abscisic acid in mammalian cells.
Abscisic Acid
/ metabolism
Adaptor Proteins, Signal Transducing
/ metabolism
Arabidopsis
/ metabolism
Arabidopsis Proteins
/ genetics
Biosensing Techniques
Carrier Proteins
/ metabolism
Cytoskeletal Proteins
/ metabolism
Gene Expression Regulation, Plant
HEK293 Cells
Humans
Plant Proteins
/ metabolism
abscisic acid
biosensor
cell-based assay
synthetic biology
Journal
FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
revised:
21
05
2022
received:
03
01
2022
accepted:
24
05
2022
pubmed:
22
6
2022
medline:
13
10
2022
entrez:
21
6
2022
Statut:
ppublish
Résumé
Abscisic acid (ABA) is a signalling molecule conserved in plants, bacteria, fungi, and animals. Recently, ABA has gained attention for its pharmacological activities and its potential as a biomarker for the severity of chronic obstructive pulmonary disease and glioma. This prompts the development of a reliable, sensitive, rapid, and cost-effective method to quantify ABA levels in mammalian cells and tissues. The previously described ABA biosensor system based on the ABA-dependent interaction between the plant ABA receptor PYL1 and co-receptor ABI1 is not sensitive enough for the low ABA levels seen in mammals. Therefore, we optimized this system by replacing PYL1 with other high-affinity plant PYL proteins. The optimized biosensor system engineered with the PYL8 receptor enabled the quantification of ABA at low concentrations in HEK293T cells.
Identifiants
pubmed: 35727199
doi: 10.1002/1873-3468.14431
doi:
Substances chimiques
ABI1 protein, human
0
Adaptor Proteins, Signal Transducing
0
Arabidopsis Proteins
0
Carrier Proteins
0
Cytoskeletal Proteins
0
Plant Proteins
0
Abscisic Acid
72S9A8J5GW
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2576-2590Informations de copyright
© 2022 Federation of European Biochemical Societies.
Références
Jones AM, Danielson JÅ, ManojKumar SN, Lanquar V, Grossmann G, Frommer WB. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife. 2014;3:e01741.
Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, Getzoff ED, et al. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife. 2014;3:e01739.
Balcerowicz M, Shetty KN, Jones AM. Fluorescent biosensors illuminating plant hormone research. Plant Physiol. 2021;187:590-602.
Wu R, Duan L, Pruneda-Paz JL, Oh D, Pound M, Kay S, et al. The 6xABRE synthetic promoter enables the spatiotemporal analysis of ABA-mediated transcriptional Regulation1[OPEN]. Plant Physiol. 2018;177:1650-65.
Zhang L, Takahashi Y, Hsu P-K, Kollist H, Merilo E, Krysan PJ, et al. FRET kinase sensor development reveals SnRK2/OST1 activation by ABA but not by MeJA and high CO2 during stomatal closure. eLife. 2020;9:e56351.
Guri AJ, Hontecillas R, Si H, Liu D, Bassaganya-Riera J. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clin Nutr. 2007;26:107-16.
Leber A, Hontecillas R, Tubau-Juni N, Zoccoli-Rodriguez V, Goodpaster B, Bassaganya-Riera J. Abscisic acid enriched fig extract promotes insulin sensitivity by decreasing systemic inflammation and activating LANCL2 in skeletal muscle. Sci Rep. 2020;10:10463.
Derosa G, Maffioli P, D'Angelo A, Preti PS, Tenore G, Novellino E. Abscisic acid treatment in patients with prediabetes. Nutrients. 2020;12:E2931.
Magnone M, Emionite L, Guida L, Vigliarolo T, Sturla L, Spinelli S, et al. Insulin-independent stimulation of skeletal muscle glucose uptake by low-dose abscisic acid via AMPK activation. Sci Rep. 2020;10:1454.
Guri AJ, Hontecillas R, Bassaganya-Riera J. Abscisic acid synergizes with rosiglitazone to improve glucose tolerance and down-modulate macrophage accumulation in adipose tissue: possible action of the cAMP/PKA/PPAR γ axis. Clin Nutr. 2010;29:646-53.
Guri AJ, Hontecillas R, Bassaganya-Riera J. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration. Clin Nutr. 2010;29:824-31.
Guri AJ, Evans NP, Hontecillas R, Bassaganya-Riera J. T cell PPAR γ is required for the anti-inflammatory efficacy of abscisic acid against experimental IBD. J Nutr Biochem. 2011;22:812-9.
Qi C-C, Shu Y-M, Chen F-H, Ding Y-Q, Zhou J-N. Sensitivity during the forced swim test is a key factor in evaluating the antidepressant effects of abscisic acid in mice. Behav Brain Res. 2016;300:106-13.
Qi C-C, Zhang Z, Fang H, Liu J, Zhou N, Ge J-F, et al. Antidepressant effects of abscisic acid mediated by the downregulation of corticotrophin-releasing hormone gene expression in rats. Int J Neuropsychopharmacol. 2014;18:pyu006.
Sánchez-Sarasúa S, Moustafa S, García-Avilés Á, López-Climent MF, Gómez-Cadenas A, Olucha-Bordonau FE, et al. The effect of abscisic acid chronic treatment on neuroinflammatory markers and memory in a rat model of high-fat diet induced neuroinflammation. Nutr Metab. 2016;13:73.
Khorasani A, Abbasnejad M, Esmaeili-Mahani S. Phytohormone abscisic acid ameliorates cognitive impairments in streptozotocin-induced rat model of Alzheimer's disease through PPARβ/δ and PKA signaling. Int J Neurosci. 2019;129:1053-65.
Hoang QTM, Nguyen VK, Oberacher H, Fuchs D, Hernandez-Vargas EA, Borucki K, et al. Serum concentration of the phytohormone abscisic acid is associated with immune-regulatory mediators and is a potential biomarker of disease severity in chronic obstructive pulmonary disease. Front Med. 2021;8:693.
Zhou N, Yao Y, Ye H, Zhu W, Chen L, Mao Y. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway. Int J Cancer. 2016;138:1947-58.
Fresia C, Vigliarolo T, Guida L, Booz V, Bruzzone S, Sturla L, et al. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2. Sci Rep. 2016;6:26658.
Bassaganya-Riera J, Guri AJ, Lu P, Climent M, Carbo A, Sobral BW, et al. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor γ. J Biol Chem. 2011;286:2504-16.
Guri AJ, Hontecillas R, Ferrer G, Casagran O, Wankhade U, Noble AM, et al. Loss of PPARγ in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. J Nutr Biochem. 2008;19:216-28.
Hontecillas R, Roberts PC, Carbo A, Vives C, Horne WT, Genis S, et al. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism. J Nutr Biochem. 2013;24:1019-27.
Sommer M, Wolf G. Rosiglitazone increases PPARgamma in renal tubular epithelial cells and protects against damage by hydrogen peroxide. Am J Nephrol. 2007;27:425-34.
Dutta D, Lai K-Y, Reyes-Ordoñez A, Chen J, van der Donk WA. Lanthionine synthetase C-like protein 2 (LanCL2) is important for adipogenic differentiation. J Lipid Res. 2018;59:1433-45.
Bruzzone S, Moreschi I, Usai C, Guida L, Damonte G, Salis A, et al. Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci USA. 2007;104:5759-64.
Magnone M, Sturla L, Jacchetti E, Scarfì S, Bruzzone S, Usai C, et al. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation. FASEB J. 2012;26:1261-71.
Le Page-Degivry M-T, Bidard J, Rouvier E, Bulard C, Lazdunski M. Presence of abscisic acid, a phytohormone, in the mammalian brain. Proc Natl Acad Sci USA. 1986;83:1155-8.
Bruzzone S, Basile G, Mannino E, Sturla L, Magnone M, Grozio A, et al. Autocrine abscisic acid mediates the UV-B-induced inflammatory response in human granulocytes and keratinocytes. J Cell Physiol. 2012;227:2502-10.
Sakamoto S, Putalun W, Vimolmangkang S, Phoolcharoen W, Shoyama Y, Tanaka H, et al. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med. 2018;72:32-42.
Su Y, Li W, Huang Z, Wang R, Luo W, Liu Q, et al. Sensitive and high throughput quantification of abscisic acid based on quantitative real time immuno-PCR. Plant Methods. 2018;14:104.
Liang F-S, Ho WQ, Crabtree GR. Engineering the ABA Plant stress pathway for regulation of induced proximity. Sci Signal. 2011;4:rs2.
Lebar T, Lainšček D, Merljak E, Aupič J, Jerala R. A tunable orthogonal coiled-coil interaction toolbox for engineering mammalian cells. Nat Chem Biol. 2020;16:513-9.
Dupeux F, Santiago J, Betz K, Twycross J, Park S-Y, Rodriguez L, et al. A thermodynamic switch modulates abscisic acid receptor sensitivity: a thermodynamic switch in the ABA pathway. EMBO J. 2011;30:4171-84.
Lievens L, Pollier J, Goossens A, Beyaert R, Staal J. Abscisic acid as pathogen effector and immune regulator. Front Plant Sci. 2017;8:587.
Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang H-J, Asano A, et al. Structural basis of abscisic acid signalling. Nature. 2009;462:609-14.
Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, et al. Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J. 2010;61:25-35.
Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade a PP2Cs. Plant J. 2009;60:575-88.
Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J. 2004;23:1647-56.
Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, et al. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 2004;134:1439-49.
Talmann L, Wiesner J, Vilcinskas A. Strategies for the construction of insect P450 fusion enzymes. Z Naturforsch C J Biosci. 2017;72:405-15.
Artsaenko O, Peisker M, Zur Nieden U, Fiedler U, Weiler EW, Müntz K, et al. Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J. 1995;8:745-50.
Xiong D-M, Liu Z, Chen H, Xue J-T, Yang Y, Chen C, et al. Profiling the dynamics of abscisic acid and ABA-glucose ester after using the glucosyltransferase UGT71C5 to mediate abscisic acid homeostasis in Arabidopsis thaliana by HPLC-ESI-MS/MS. J Pharm Anal. 2014;4:190-6.
Lin Y-C, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun. 2014;5:4767.
Sturla L, Fresia C, Guida L, Bruzzone S, Scarfì S, Usai C, et al. LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells. J Biol Chem. 2009;284:28045-57.
Chan LSA, Wells RA. Cross-talk between PPARs and the partners of RXR: a molecular perspective. PPAR Res. 2009;2009:925309.
le Maire A, Teyssier C, Balaguer P, Bourguet W, Germain P. Regulation of RXR-RAR heterodimers by RXR- and RAR-specific ligands and their combinations. Cell. 2019;8:1392.
Bruzzone S, Bodrato N, Usai C, Guida L, Moreschi I, Nano R, et al. Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second messenger. J Biol Chem. 2008;283:32188-97.
Bruzzone S, Ameri P, Briatore L, Mannino E, Basile G, Andraghetti G, et al. The plant hormone abscisic acid increases in human plasma after hyperglycemia and stimulates glucose consumption by adipocytes and myoblasts. FASEB J. 2012;26:1251-60.
Miyazaki S, Tashiro F, Tsuchiya T, Sasaki K, Miyazaki J-I. Establishment of a long-term stable β-cell line and its application to analyze the effect of Gcg expression on insulin secretion. Sci Rep. 2021;11:477.
Shi J, Fan J, Su Q, Yang Z. Cytokines and abnormal glucose and lipid metabolism. Front Endocrinol. 2019;10:703.
Yang X, Boehm JS, Yang X, Salehi-Ashtiani K, Hao T, Shen Y, et al. A public genome-scale lentiviral expression library of human ORFs. Nat Methods. 2011;8:659-61.
Zeng M, van der Donk WA, Chen J. Lanthionine synthetase C-like protein 2 (LanCL2) is a novel regulator of Akt. Mol Biol Cell. 2014;25:3954-61.
De Groote P, Grootjans S, Lippens S, Eichperger C, Leurs K, Kahr I, et al. Generation of a new gateway-compatible inducible lentiviral vector platform allowing easy derivation of co-transduced cells. Biotechniques. 2016;60:252-9.
Schmitz ML, Baeuerle PA. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J. 1991;10:3805-17.
Petersen LK, Stowers RS. A gateway MultiSite recombination cloning toolkit. PLoS ONE. 2011;6:e24531.
Ishida T, Mizushima S i, Azuma S, Kobayashi N, Tojo T, Suzuki K, Aizawa S, Watanabe T, Mosialos G, Kieff E, Yamamoto T & Inoue J (1996) Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem 271, 28745-28748.