A functional definition to distinguish ponds from lakes and wetlands.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
21 06 2022
Historique:
received: 07 01 2022
accepted: 08 06 2022
entrez: 21 6 2022
pubmed: 22 6 2022
medline: 24 6 2022
Statut: epublish

Résumé

Ponds are often identified by their small size and shallow depths, but the lack of a universal evidence-based definition hampers science and weakens legal protection. Here, we compile existing pond definitions, compare ecosystem metrics (e.g., metabolism, nutrient concentrations, and gas fluxes) among ponds, wetlands, and lakes, and propose an evidence-based pond definition. Compiled definitions often mentioned surface area and depth, but were largely qualitative and variable. Government legislation rarely defined ponds, despite commonly using the term. Ponds, as defined in published studies, varied in origin and hydroperiod and were often distinct from lakes and wetlands in water chemistry. We also compared how ecosystem metrics related to three variables often seen in waterbody definitions: waterbody size, maximum depth, and emergent vegetation cover. Most ecosystem metrics (e.g., water chemistry, gas fluxes, and metabolism) exhibited nonlinear relationships with these variables, with average threshold changes at 3.7 ± 1.8 ha (median: 1.5 ha) in surface area, 5.8 ± 2.5 m (median: 5.2 m) in depth, and 13.4 ± 6.3% (median: 8.2%) emergent vegetation cover. We use this evidence and prior definitions to define ponds as waterbodies that are small (< 5 ha), shallow (< 5 m), with < 30% emergent vegetation and we highlight areas for further study near these boundaries. This definition will inform the science, policy, and management of globally abundant and ecologically significant pond ecosystems.

Identifiants

pubmed: 35729265
doi: 10.1038/s41598-022-14569-0
pii: 10.1038/s41598-022-14569-0
pmc: PMC9213426
doi:

Substances chimiques

Water 059QF0KO0R

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

10472

Informations de copyright

© 2022. The Author(s).

Références

Alexander, L. C. Science at the boundaries: Scientific support for the Clean Water Rule. Freshw. Sci. 34, 1588–1594 (2015).
doi: 10.1086/684076
Kraemer, B. M. Rethinking discretization to advance limnology amid the ongoing information explosion. Water Res. 178, 115801 (2020).
pubmed: 32348931 doi: 10.1016/j.watres.2020.115801
Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).
doi: 10.1002/2014GL060641
Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO
doi: 10.1038/ngeo2654
Dodds, W. K. & Cole, J. J. Expanding the concept of trophic state in aquatic ecosystems: It’s not just the autotrophs. Aquat. Sci. 69, 427–439 (2007).
doi: 10.1007/s00027-007-0922-1
Hutchinson, G. E. & Loffler, H. The thermal classification of lakes. Proc. Natl. Acad. Sci. 42, 84–86 (1956).
pubmed: 16589823 pmcid: 528218 doi: 10.1073/pnas.42.2.84
Lewis, W. M. Jr. A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 40, 1779–1787 (1983).
doi: 10.1139/f83-207
Downing, J. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 29, 9–24 (2010).
doi: 10.23818/limn.29.02
Thienemann, A. Die binnengewässer mitteleuropas: eine limnologische einfurung (E. Schweizerbart, 1925).
Welch, P. S. Limnology (McGraw-Hill, 1952).
Wetzel, R. Limnology (Academic Press, 2001).
Wisconsin DNR. Wisconsin Lakes. (2009).
Minnesota Department of Natural Resources. Lakes, rivers, and wetlands facts. Minnesota Lakes, rivers, and wetlands facts https://www.dnr.state.mn.us/faq/mnfacts/water.html (2013).
Litke, E. Who has more lakes: Minnesota or Wisconsin? politifact.com https://www.politifact.com/factchecks/2019/may/23/sara-meaney/who-has-more-lakes-minnesota-or-wisconsin/ (2019).
Thornton, B. F., Wik, M. & Crill, P. M. Double-counting challenges the accuracy of high-latitude methane inventories. Geophys. Res. Lett. 43, 12–569 (2016).
doi: 10.1002/2016GL071772
Fairchild, G. W., Anderson, J. N. & Velinsky, D. J. The trophic state ‘chain of relationships’ in ponds: Does size matter?. Hydrobiologia 539, 35–46 (2005).
doi: 10.1007/s10750-004-3083-4
Oertli, B., Céréghino, R., Hull, A. & Miracle, R. Pond conservation: From science to practice. Hydrobiologia 634, 1–9 (2009).
doi: 10.1007/s10750-009-9891-9
Søndergaard, M., Jeppesen, E. & Jensen, J. P. Pond or lake: Does it make any difference?. Arch. Für Hydrobiol. 162, 143–165 (2005).
doi: 10.1127/0003-9136/2005/0162-0143
Richardson, D. C. et al. Pond data: Physical, chemical, and biological characteristics with scientific and United States of America state definitions from literature and legislative surveys. Environ. Data Initiat. https://doi.org/10.6073/pasta/ec507ac70846b17d0633d95aa3c680c6 (2022).
Choffel, Q., Touchart, L., Bartout, P. & Al Domany, M. Temporal and spatial variations in heat content of a French pond. Geogr. Tech. 12, 9–22 (2017).
Biggs, J., Williams, P., Whitfield, M., Nicolet, P. & Weatherby, A. 15 years of pond assessment in Britain: Results and lessons learned from the work of Pond Conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 693–714 (2005).
doi: 10.1002/aqc.745
Tiner, R. W. A Guide to Wetland Formation, Identification, Delineation, Classification, and Mapping 2nd edn. (CRC Press, 2016).
doi: 10.1201/9781315374710
Federal Geographic Data Committee. Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013. 2nd ed (2013).
Kiai, S. P. M. & Mailu, G. M. Kenya Country Paper (FAO–Food and Agriculture Organization of the United Nations, 1998).
Bridgewater, P. & Kim, R. E. The Ramsar convention on wetlands at 50. Nat. Ecol. Evol. 5, 268–270 (2021).
pubmed: 33526891 doi: 10.1038/s41559-021-01392-5
Ramsar Information Bureau. What are Wetlands? Ramsar Information Paper No. 1. https://www.ramsar.org/sites/default/files/documents/library/info2007-01-e.pdf (2007).
Sand-Jensen, K. Nature in Denmark: The Fresh Water. (Gyldendal Trade 150, 2013).
European Commission. Pond. Knowledge for policy glossary https://knowledge4policy.ec.europa.eu/glossary-item/pond_en (2018).
IUCN (International Union for Conservation of Nature). International Union for Conservation of Nature glossary of definitions. https://www.iucn.org/sites/dev/files/iucn-glossary-of-definitions_en_2021.05.pdf (2021).
Hill, M. J. et al. Pond ecology and conservation: Research priorities and knowledge gaps. Ecosphere 12, e03853 (2021).
doi: 10.1002/ecs2.3853
Cowardin, L. M., Carter, V., Golet, F. C. & LaRoe, E. T. Classification of Wetlands and Deepwater Habitats of the United States. (Fish and Wildlife Service, U.S. Department of the Interior, 1979).
Tiner, R. W. Dichotomous Keys and Mapping Codes for Wetland Landscape Position, Landform, Water Flow Path, and Waterbody Type: Version 3.0. 65 (2014).
Sullivan, S. M. P., Rains, M. C. & Rodewald, A. D. Opinion: The proposed change to the definition of “waters of the United States” flouts sound science. Proc. Natl. Acad. Sci. 116, 11558–11561 (2019).
pubmed: 31186378 pmcid: 6576110 doi: 10.1073/pnas.1907489116
Kalff, J. Limnology (Prentice-Hall Inc., 2002).
Oertli, B. et al. Conservation and monitoring of pond biodiversity: Introduction. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 535–540 (2005).
doi: 10.1002/aqc.752
Markfort, C. D. et al. Wind sheltering of a lake by a tree canopy or bluff topography. Water Resour. Res. 46, W03530 (2010).
doi: 10.1029/2009WR007759
Holgerson, M. A., Farr, E. R. & Raymond, P. A. Gas transfer velocities in small forested ponds. J. Geophys. Res. Biogeosci. 122, 1011–1021 (2017).
doi: 10.1002/2016JG003734
Martinsen, K. T., Andersen, M. R. & Sand-Jensen, K. Water temperature dynamics and the prevalence of daytime stratification in small temperate shallow lakes. Hydrobiologia 826, 247–262 (2019).
doi: 10.1007/s10750-018-3737-2
Woolway, R. I. et al. Diel surface temperature range scales with lake size. PLoS ONE 11, e0152466 (2016).
pubmed: 27023200 pmcid: 4811584 doi: 10.1371/journal.pone.0152466
Wilhelm, S. & Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 53, 226–237 (2008).
Staehr, P. A., Baastrup-Spohr, L., Sand-Jensen, K. & Stedmon, C. Lake metabolism scales with lake morphometry and catchment conditions. Aquat. Sci. 74, 155–169 (2012).
doi: 10.1007/s00027-011-0207-6
Deemer, B. R. & Holgerson, M. A. Drivers of methane flux differ between lakes and reservoirs, complicating global upscaling efforts. J. Geophys. Res. Biogeosci. 126, e2019JG005600 (2021).
doi: 10.1029/2019JG005600
Vadeboncoeur, Y., Peterson, G., Vander Zanden, M. J. & Kalff, J. Benthic algal production across lake size gradients: Interactions among morphometry, nutrients, and light. Ecology 89, 2542–2552 (2008).
pubmed: 18831175 doi: 10.1890/07-1058.1
Scheffer, M. The story of some shallow lakes. In Ecology of Shallow Lakes (ed. Scheffer, M.) 1–19 (Springer Netherlands, 2004). https://doi.org/10.1007/978-1-4020-3154-0_1 .
doi: 10.1007/978-1-4020-3154-0_1
Hagerthey, S. E., Cole, J. J. & Kilbane, D. Aquatic metabolism in the Everglades: Dominance of water column heterotrophy. Limnol. Oceanogr. 55, 653–666 (2010).
doi: 10.4319/lo.2010.55.2.0653
Benelli, S. & Bartoli, M. Worms and submersed macrophytes reduce methane release and increase nutrient removal in organic sediments. Limnol. Oceanogr. Lett. 6, 329–338 (2021).
doi: 10.1002/lol2.10207
Oliver, S. K. et al. Prediction of lake depth across a 17-state region in the United States. Inland Waters 6, 314–324 (2016).
doi: 10.1080/IW-6.3.957
Padisák, J. & Reynolds, C. S. Shallow lakes: The absolute, the relative, the functional and the pragmatic. Hydrobiologia 506, 1–11 (2003).
doi: 10.1023/B:HYDR.0000008630.49527.29
Holgerson, M. A., Lambert, M. R., Freidenburg, L. K. & Skelly, D. K. Suburbanization alters small pond ecosystems: Shifts in nitrogen and food web dynamics. Can. J. Fish. Aquat. Sci. 75, 641–652 (2018).
doi: 10.1139/cjfas-2016-0526
Scheffer, M. et al. Floating plant dominance as a stable state. Proc. Natl. Acad. Sci. 100, 4040–4045 (2003).
pubmed: 12634429 pmcid: 153044 doi: 10.1073/pnas.0737918100
Scheffer, M. & van Nes, E. H. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. In Shallow Lakes in a Changing World (eds Gulati, R. D. et al.) 455–466 (Springer Netherlands, 2007). https://doi.org/10.1007/978-1-4020-6399-2_41 .
doi: 10.1007/978-1-4020-6399-2_41
Yuan, J. et al. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat. Clim. Change 9, 318–322 (2019).
doi: 10.1038/s41558-019-0425-9
Biggs, J., von Fumetti, S. & Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793, 3–39 (2017).
doi: 10.1007/s10750-016-3007-0
USEPA. National wetland condition assessment 2011: a collaborative survey of the nation’s wetlands. EPA 843-R-15-005. (2016).
USEPA. United States Environmental Protection Agency National Wetland Condition Assessment 2011 (nwca2011_siteinfo.csv, nwca2011_waterchem.csv, nwca2011_chla.csv, and corresponding metadata files). (2016).
Soranno, P. A. et al. LAGOS-NE: A multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes. GigaScience 6, gix101 (2017).
doi: 10.1093/gigascience/gix101
USEPA. National Lakes assessment 2012: a collaborative survey of lakes in the United States. EPA 841-R-16-113. (2016).
USEPA. National Lakes Assessment 2012 (nla2012_waterchem_wide.csv, nla2012_wide_siteinfo_08232 016.csv, and corresponding metadata files). (2016).
EEA. Waterbase: European Environment Agency (EEA) water quality data. https://www.eea.europa.eu/data-and-maps/data/waterbase-water-quality-2 (2020).
Hoellein, T. J., Bruesewitz, D. A. & Richardson, D. C. Revisiting Odum (1956): A synthesis of aquatic ecosystem metabolism. Limnol. Oceanogr. 58, 2089–2100 (2013).
doi: 10.4319/lo.2013.58.6.2089
Hornbach, D. J., Schilling, E. G. & Kundel, H. Ecosystem metabolism in small ponds: The effects of floating-leaved macrophytes. Water 12, 1458 (2020).
doi: 10.3390/w12051458
Muggeo, V. M. R. segmented: An R package to fit regression models with broken-line relationships. R News 8, 7 (2008).
Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
doi: 10.1007/s00265-010-1029-6

Auteurs

David C Richardson (DC)

Biology Department, State University of New York at New Paltz, New Paltz, NY, USA. richardsond@newpaltz.edu.

Meredith A Holgerson (MA)

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.

Matthew J Farragher (MJ)

School of Biology and Ecology, Climate Change Institute, University of Maine, Orono, ME, USA.

Kathryn K Hoffman (KK)

Departments of Biology and Environmental Studies, St. Olaf College, Northfield, MN, USA.

Katelyn B S King (KBS)

Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.

María B Alfonso (MB)

Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW, Bahía Blanca, Argentina.

Mikkel R Andersen (MR)

Centre for Freshwater and Environmental Studies, Dundalk Institute of Technology, Dundalk, Ireland.

Kendra Spence Cheruveil (KS)

Department of Fisheries and Wildlife and the Lyman Briggs College, Michigan State University, East Lansing, MI, USA.

Kristen A Coleman (KA)

Department of Geography, York University, Toronto, ON, Canada.

Mary Jade Farruggia (MJ)

Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA.

Rocio Luz Fernandez (RL)

National Scientific and Technical Research Council (CONICET), Cordoba, Argentina.

Kelly L Hondula (KL)

Battelle, National Ecological Observatory Network (NEON), Boulder, CO, USA.

Gregorio A López Moreira Mazacotte (GA)

Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.

Katherine Paul (K)

Biology Department, State University of New York at New Paltz, New Paltz, NY, USA.

Benjamin L Peierls (BL)

Lakes Environmental Association, Bridgton, ME, USA.

Joseph S Rabaey (JS)

Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, St. Paul, MN, USA.

Steven Sadro (S)

Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA.

María Laura Sánchez (ML)

CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.

Robyn L Smyth (RL)

Environmental and Urban Studies, Bard College, Annandale-on-Hudson, NY, USA.

Jon N Sweetman (JN)

Department of Ecosystem Science and Management, Penn State University, University College, PA, USA.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH