Chemokines and chemokine receptors in allergic rhinitis: from mediators to potential therapeutic targets.
Allergic rhinitis
Cell infiltration
Chemokine
Chemokine receptor
Immune inflammation
Therapeutic target
Journal
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
ISSN: 1434-4726
Titre abrégé: Eur Arch Otorhinolaryngol
Pays: Germany
ID NLM: 9002937
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
17
05
2022
accepted:
30
05
2022
pubmed:
23
6
2022
medline:
1
10
2022
entrez:
22
6
2022
Statut:
ppublish
Résumé
Allergic rhinitis (AR) is an immune-mediated inflammatory condition characterized by immune cell infiltration of the nasal mucosa, with symptoms of rhinorrhea, sneezing, nasal obstruction, and itchiness. Currently, common medication for AR is anti-inflammatory treatment including intranasal steroids, oral, or intranasal anti-histamines, and immunotherapy. These strategies are effective to the majority of patients with AR, but some patients under medication cannot achieve symptom relieve and suffer from bothersome side effects, indicating a demand for novel anti-inflammatory treatment as alternatives. Chemokines, a complex superfamily of small, secreted proteins, were initially recognized for their chemotactic effects on various immune cells. Chemokines constitute both physiological and inflammatory cell positioning systems and mediate cell localization to certain sites via interaction with their receptors, which are expressed on responding cells. Chemokines and their receptors participate in the sensitization, early phase response, and late phase response of AR by promoting inflammatory cell recruitment, differentiation, and allergic mediator release. In this review, we first systemically summarize chemokines and chemokine receptors that are important in AR pathophysiology and then discuss potential strategies targeting chemokines and their receptors for AR therapy.
Identifiants
pubmed: 35732904
doi: 10.1007/s00405-022-07485-6
pii: 10.1007/s00405-022-07485-6
doi:
Substances chimiques
Anti-Inflammatory Agents
0
Chemokines
0
Receptors, Chemokine
0
Steroids
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
5089-5095Subventions
Organisme : National Natural Science Foundation of China
ID : 81902133
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Bousquet J, Anto JM, Bachert C, Baiardini I, Bosnic-Anticevich S, Walter Canonica G et al (2020) Allergic rhinitis. Nat Rev Dis Primers 6:95. https://doi.org/10.1038/s41572-020-00227-0
doi: 10.1038/s41572-020-00227-0
pubmed: 33273461
Seidman MD, Gurgel RK, Lin SY, Schwartz SR, Baroody FM, Bonner JR et al (2015) Clinical practice guideline: allergic rhinitis. Otolaryngol Head Neck Surg 152:S1-43. https://doi.org/10.1177/0194599814561600
doi: 10.1177/0194599814561600
pubmed: 25644617
Bousquet J, Schünemann HJ, Togias A, Bachert C, Erhola M, Hellings PW et al (2020) Next-generation Allergic Rhinitis and Its Impact on Asthma (ARIA) guidelines for allergic rhinitis based on Grading of Recommendations Assessment, Development and Evaluation (GRADE) and real-world evidence. J Allergy Clin Immunol 145:70-80.e3. https://doi.org/10.1016/j.jaci.2019.06.049
doi: 10.1016/j.jaci.2019.06.049
pubmed: 31627910
Droessaert V, Timmermans M, Dekimpe E, Seys S, Ceuppens JJ, Fokkens WJ et al (2016) Real-life study showing better control of allergic rhinitis by immunotherapy than regular pharmacotherapy. Rhinology 54:214–220. https://doi.org/10.4193/Rhino14.282
doi: 10.4193/Rhino14.282
pubmed: 27059095
Meltzer EO, Blaiss MS, Derebery MJ, Mahr TA, Gordon BR, Sheth KK et al (2009) Burden of allergic rhinitis: results from the Pediatric Allergies in America survey. J Allergy Clin Immunol 124:S43-70. https://doi.org/10.1016/j.jaci.2009.05.013
doi: 10.1016/j.jaci.2009.05.013
pubmed: 19592081
Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25:75–84. https://doi.org/10.1016/j.it.2003.12.005
doi: 10.1016/j.it.2003.12.005
pubmed: 15102366
Schall TJ, Proudfoot AE (2011) Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat Rev Immunol 11:355–363. https://doi.org/10.1038/nri2972
doi: 10.1038/nri2972
pubmed: 21494268
Zheng J, Zeng M, Nian JB, Zeng LY, Fu Z, Huang QJ et al (2020) The CXCR4/miR-125b/FoxP3 axis regulates the function of the epithelial barrier via autophagy in allergic rhinitis. Am J Transl Res 12:2570–2584
pubmed: 32655791
pmcid: 7344073
Liu C, Zhang X, Xiang Y, Qu X, Liu H, Liu C et al (2018) Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (Review). Mol Med Rep 17:6935–6941. https://doi.org/10.3892/mmr.2018.8739
doi: 10.3892/mmr.2018.8739
pubmed: 29568899
Kim B, Yeon JW, Lee JH, Lee HJ, Byun J, Lee K (2020) CCL2 mitigates cyclic AMP-suppressed Th2 immune response in human dendritic cells. Allergy 75:2108–2111. https://doi.org/10.1111/all.14284
doi: 10.1111/all.14284
pubmed: 32191339
Hirata H, Yukawa T, Tanaka A, Miyao T, Fukuda T, Fukushima Y et al (2019) Th2 cell differentiation from naive CD4(+) T cells is enhanced by autocrine CC chemokines in atopic diseases. Clin Exp Allergy 49:474–483. https://doi.org/10.1111/cea.13313
doi: 10.1111/cea.13313
pubmed: 30431203
Burks AW, Holgate ST, O’Hehir RE, Bacharier LB, Broide DH, Hershey GK et al (2019) Middleton’s allergy E-Book: principles and practice. Elsevier, Edinburgh
Romagnani S (2002) Cytokines and chemoattractants in allergic inflammation. Mol Immunol 38:881–885. https://doi.org/10.1016/s0161-5890(02)00013-5
doi: 10.1016/s0161-5890(02)00013-5
pubmed: 12009564
Wang D, Smitz J, Waterschoot S, Clement P (1997) An approach to the understanding of the nasal early-phase reaction induced by nasal allergen challenge. Allergy 52:162–167. https://doi.org/10.1111/j.1398-9995.1997.tb00970.x
doi: 10.1111/j.1398-9995.1997.tb00970.x
pubmed: 9105520
Miyazaki D, Nakamura T, Toda M, Cheung-Chau KW, Richardson RM, Ono SJ (2005) Macrophage inflammatory protein-1alpha as a costimulatory signal for mast cell-mediated immediate hypersensitivity reactions. J Clin Invest 115:434–442. https://doi.org/10.1172/jci18452
doi: 10.1172/jci18452
pubmed: 15650768
pmcid: 544033
Kuna P, Reddigari SR, Schall TJ, Rucinski D, Viksman MY, Kaplan AP (1992) RANTES, a monocyte and T lymphocyte chemotactic cytokine releases histamine from human basophils. J Immunol 149:636–642
pubmed: 1378073
Castellani ML, De Lutiis MA, Toniato E, Conti F, Felaco P, Fulcheri M et al (2010) Impact of RANTES, MCP-1 and IL-8 in mast cells. J Biol Regul Homeost Agents 24:1–6
pubmed: 20385066
Pawankar R, Mori S, Ozu C, Kimura S (2011) Overview on the pathomechanisms of allergic rhinitis. Asia Pac Allergy 1:157–167. https://doi.org/10.5415/apallergy.2011.1.3.157
doi: 10.5415/apallergy.2011.1.3.157
pubmed: 22053313
pmcid: 3206239
Blanchard C, Rothenberg ME (2009) Biology of the eosinophil. Adv Immunol 101:81–121. https://doi.org/10.1016/s0065-2776(08)01003-1
doi: 10.1016/s0065-2776(08)01003-1
pubmed: 19231593
pmcid: 4109275
Pease JE (2006) Asthma, allergy and chemokines. Curr Drug Targets 7:3–12. https://doi.org/10.2174/138945006775270204
doi: 10.2174/138945006775270204
pubmed: 16454696
Dai M, Zhu X, Yu J, Yuan J, Zhu Y, Bao Y et al (2022) CCR3 gene knockout in bone marrow cells ameliorates combined allergic rhinitis and asthma syndrome (CARAS) by reducing airway inflammatory cell infiltration and Th2 cytokines expression in mice model. Int Immunopharmacol 104:108509. https://doi.org/10.1016/j.intimp.2021.108509
doi: 10.1016/j.intimp.2021.108509
pubmed: 34998035
Perić A, Sotirović J, Špadijer-Mirković C, Matković-Jožin S, Perić AV, Vojvodić D (2016) Nonselective chemokine levels in nasal secretions of patients with perennial nonallergic and allergic rhinitis. Int Forum Allergy Rhinol 6:392–397. https://doi.org/10.1002/alr.21684
doi: 10.1002/alr.21684
pubmed: 26679085
Yi S, Zhai J, Niu R, Zhu G, Wang M, Liu J et al (2018) Eosinophil recruitment is dynamically regulated by interplay among lung dendritic cell subsets after allergen challenge. Nat Commun 9:3879. https://doi.org/10.1038/s41467-018-06316-9
doi: 10.1038/s41467-018-06316-9
pubmed: 30250029
pmcid: 6155158
Chen Y, Yang M, Deng J, Wang K, Shi J (2020) Elevated levels of activated and pathogenic eosinophils characterize moderate-severe house dust mite allergic rhinitis. J Immunol Res 2020:8085615. https://doi.org/10.1155/2020/8085615
doi: 10.1155/2020/8085615
pubmed: 32855977
pmcid: 7443015
Perić A, Mirković C, Đurđević BV, Perić AV, Vojvodić D (2017) Eosinophil chemokines and Clara cell protein 16 production in nasal mucosa of patients with persistent allergic rhinitis. Eurasian J Med 49:178–182. https://doi.org/10.5152/eurasianjmed.2017.17203
doi: 10.5152/eurasianjmed.2017.17203
pubmed: 29123440
pmcid: 5665626
Špadijer Mirković C, Perić A, Vukomanović Đurđević B, Vojvodić D (2017) Effects of fluticasone Furoate nasal spray on parameters of eosinophilic inflammation in patients with nasal polyposis and perennial allergic rhinitis. Ann Otol Rhinol Laryngol 126:573–580. https://doi.org/10.1177/0003489417713505
doi: 10.1177/0003489417713505
pubmed: 28587510
Koya T, Takeda K, Kodama T, Miyahara N, Matsubara S, Balhorn A et al (2006) RANTES (CCL5) regulates airway responsiveness after repeated allergen challenge. Am J Respir Cell Mol Biol 35:147–154. https://doi.org/10.1165/rcmb.2005-0394OC
doi: 10.1165/rcmb.2005-0394OC
pubmed: 16528011
pmcid: 2643254
Zhang RX, Yu SQ, Jiang JZ, Liu GJ (2007) Complementary DNA microarray analysis of chemokines and their receptors in allergic rhinitis. J Investig Allergol Clin Immunol 17:329–336
pubmed: 17982926
de Campos L, Galvão CES, Mairena EC, Voegels R, Kalil J, Castro FM et al (2019) Increased gene expression of inflammatory markers in nasal turbinate of patients with persistent allergic rhinitis and chronic obstruction. Eur Arch Otorhinolaryngol 276:3247–3249. https://doi.org/10.1007/s00405-019-05581-8
doi: 10.1007/s00405-019-05581-8
pubmed: 31363902
Azazi EA, Bakir SM, Mohtady HA, Almonem AA (2007) Circulating chemokine eotaxin and chemokine receptor CCR3 in allergic patients. Egypt J Immunol 14:73–82
pubmed: 20306659
Berghi NO, Dumitru M, Vrinceanu D, Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R et al (2020) Relationship between chemokines and T lymphocytes in the context of respiratory allergies (review). Exp Ther Med 20:2352–2360. https://doi.org/10.3892/etm.2020.8961
doi: 10.3892/etm.2020.8961
pubmed: 32765714
pmcid: 7401840
Tworek D, Kuna P, Młynarski W, Górski P, Pietras T, Antczak A (2013) MIG (CXCL9), IP-10 (CXCL10) and I-TAC (CXCL11) concentrations after nasal allergen challenge in patients with allergic rhinitis. Arch Med Sci 9:849–853. https://doi.org/10.5114/aoms.2013.37198
doi: 10.5114/aoms.2013.37198
pubmed: 24273568
pmcid: 3832822
Banfield G, Watanabe H, Scadding G, Jacobson MR, Till SJ, Hall DA et al (2010) CC chemokine receptor 4 (CCR4) in human allergen-induced late nasal responses. Allergy 65:1126–1133. https://doi.org/10.1111/j.1398-9995.2010.02327.x
doi: 10.1111/j.1398-9995.2010.02327.x
pubmed: 20148806
Yu X, Wang M, Cao Z (2020) Reduced CD4(+)T cell CXCR3 expression in patients with allergic rhinitis. Front Immunol 11:581180. https://doi.org/10.3389/fimmu.2020.581180
doi: 10.3389/fimmu.2020.581180
pubmed: 33224143
pmcid: 7669911
Pirayesh A, Ferdosi S, Shirzad H, Amani S, Bahadivand Chegini H, Bagheri N et al (2018) Differential expression of CCL18 in moderate/severe and mild persistent allergic rhinitis and its correlation with disease parameters. J Immunoassay Immunochem 39:485–495. https://doi.org/10.1080/15321819.2018.1506931
doi: 10.1080/15321819.2018.1506931
pubmed: 30102123
Sadeghi HR, Pirayesh A, Shahsavan S, Amani S, Amini SA, Samani KG et al (2020) Correlation of acidic mammalian chitinase expression with disease severity in patients with moderate/severe persistent allergic rhinitis. Cent Eur J Immunol 45:294–300. https://doi.org/10.5114/ceji.2020.101251
doi: 10.5114/ceji.2020.101251
pubmed: 33437181
pmcid: 7790003
Miao M, De Clercq E, Li G (2020) Clinical significance of chemokine receptor antagonists. Expert Opin Drug Metab Toxicol 16:11–30. https://doi.org/10.1080/17425255.2020.1711884
doi: 10.1080/17425255.2020.1711884
pubmed: 31903790
Gauthier M, Kale SL, Oriss TB, Scholl K, Das S, Yuan H et al (2022) Dual role for CXCR3 and CCR5 in asthmatic type 1 inflammation. J Allergy Clin Immunol 149:113-124.e7. https://doi.org/10.1016/j.jaci.2021.05.044
doi: 10.1016/j.jaci.2021.05.044
pubmed: 34146578
Zou LP, Wang LX, Zhang Y, Du WL (2011) Expression of SDF-1 in lung tissues and intervention of AMD3100 in asthmatic rats. Zhongguo Dang Dai Er Ke Za Zhi 13:321–325
pubmed: 21507304
Sakai H, Yabe S, Sato K, Kai Y, Sato F, Yumoto T et al (2018) ELR(+) chemokine-mediated neutrophil recruitment is involved in 2,4,6-trinitrochlorobenzene-induced contact hypersensitivity. Clin Exp Pharmacol Physiol 45:27–33. https://doi.org/10.1111/1440-1681.12839
doi: 10.1111/1440-1681.12839
pubmed: 28762515
Keglowich L, Roth M, Philippova M, Resink T, Tjin G, Oliver B et al (2013) Bronchial smooth muscle cells of asthmatics promote angiogenesis through elevated secretion of CXC-chemokines (ENA-78, GRO-α, and IL-8). PLoS ONE 8:e81494. https://doi.org/10.1371/journal.pone.0081494
doi: 10.1371/journal.pone.0081494
pubmed: 24339939
pmcid: 3855263
Hu JS, Freeman CM, Stolberg VR, Chiu BC, Bridger GJ, Fricker SP et al (2006) AMD3465, a novel CXCR4 receptor antagonist, abrogates schistosomal antigen-elicited (type-2) pulmonary granuloma formation. Am J Pathol 169:424–432. https://doi.org/10.2353/ajpath.2006.051234
doi: 10.2353/ajpath.2006.051234
pubmed: 16877345
pmcid: 1599788
Ding C, Li J, Zhang X (2004) Bertilimumab Cambridge antibody technology Group. Curr Opin Investig Drugs 5:1213–1218
pubmed: 15573873
Gong H, Qi H, Sun W, Zhang Y, Jiang D, Xiao J et al (2012) Design and synthesis of a series of pyrido[2,3-d]pyrimidine derivatives as CCR4 antagonists. Molecules 17:9961–9970. https://doi.org/10.3390/molecules17089961
doi: 10.3390/molecules17089961
pubmed: 22907157
pmcid: 6268086
Qi H, Zheng Y, Xu E, Guo C, Zhang Y, Sun Q et al (2012) An antagonist for CCR4 alleviates murine allergic rhinitis by intranasal administration. Int Arch Allergy Immunol 159:297–305. https://doi.org/10.1159/000337455
doi: 10.1159/000337455
pubmed: 22739408
Zheng Y, Guo C, Zhang Y, Qi H, Sun Q, Xu E et al (2011) Alleviation of murine allergic rhinitis by C19, a C-terminal peptide of chemokine-like factor 1 (CKLF1). Int Immunopharmacol 11:2188–2193. https://doi.org/10.1016/j.intimp.2011.09.017
doi: 10.1016/j.intimp.2011.09.017
pubmed: 22001899
Morokata T, Suzuki K, Masunaga Y, Taguchi K, Morihira K, Sato I et al (2006) A novel, selective, and orally available antagonist for CC chemokine receptor 3. J Pharmacol Exp Ther 317:244–250. https://doi.org/10.1124/jpet.105.097048
doi: 10.1124/jpet.105.097048
pubmed: 16339911
Gu X, Xiao F, Lu W, Xu Y, Li X, Yu C et al (2020) Nanomedicine-mediated prevention of inflammatory monocytes infiltration ameliorate ovalbumin-induced allergic rhinitis in mouse model. Autoimmunity 53:218–224. https://doi.org/10.1080/08916934.2020.1750009
doi: 10.1080/08916934.2020.1750009
pubmed: 32285703
Nibbs RJ, Graham GJ (2013) Immune regulation by atypical chemokine receptors. Nat Rev Immunol 13:815–829. https://doi.org/10.1038/nri3544
doi: 10.1038/nri3544
pubmed: 24319779
Bonecchi R, Graham GJ (2016) Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front Immunol 7:224. https://doi.org/10.3389/fimmu.2016.00224
doi: 10.3389/fimmu.2016.00224
pubmed: 27375622
pmcid: 4901034