Prediction of All-Cause Mortality Following Percutaneous Coronary Intervention in Bifurcation Lesions Using Machine Learning Algorithms.
coronary bifurcation
machine learning
percutaneous coronary intervention
prognosis
Journal
Journal of personalized medicine
ISSN: 2075-4426
Titre abrégé: J Pers Med
Pays: Switzerland
ID NLM: 101602269
Informations de publication
Date de publication:
17 Jun 2022
17 Jun 2022
Historique:
received:
13
05
2022
revised:
09
06
2022
accepted:
14
06
2022
entrez:
24
6
2022
pubmed:
25
6
2022
medline:
25
6
2022
Statut:
epublish
Résumé
Stratifying prognosis following coronary bifurcation percutaneous coronary intervention (PCI) is an unmet clinical need that may be fulfilled through the adoption of machine learning (ML) algorithms to refine outcome predictions. We sought to develop an ML-based risk stratification model built on clinical, anatomical, and procedural features to predict all-cause mortality following contemporary bifurcation PCI. Multiple ML models to predict all-cause mortality were tested on a cohort of 2393 patients (training, n = 1795; internal validation, n = 598) undergoing bifurcation PCI with contemporary stents from the real-world RAIN registry. Twenty-five commonly available patient-/lesion-related features were selected to train ML models. The best model was validated in an external cohort of 1701 patients undergoing bifurcation PCI from the DUTCH PEERS and BIO-RESORT trial cohorts. At ROC curves, the AUC for the prediction of 2-year mortality was 0.79 (0.74-0.83) in the overall population, 0.74 (0.62-0.85) at internal validation and 0.71 (0.62-0.79) at external validation. Performance at risk ranking analysis, k-center cross-validation, and continual learning confirmed the generalizability of the models, also available as an online interface. The RAIN-ML prediction model represents the first tool combining clinical, anatomical, and procedural features to predict all-cause mortality among patients undergoing contemporary bifurcation PCI with reliable performance.
Identifiants
pubmed: 35743777
pii: jpm12060990
doi: 10.3390/jpm12060990
pmc: PMC9224705
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Catheter Cardiovasc Interv. 2021 Feb 1;97(2):E227-E236
pubmed: 32438488
JACC Cardiovasc Interv. 2018 Mar 12;11(5):462-469
pubmed: 29519378
J Clin Epidemiol. 2019 Jun;110:12-22
pubmed: 30763612
Lancet. 2021 Jan 16;397(10270):199-207
pubmed: 33453782
Lancet. 2014 Feb 1;383(9915):413-23
pubmed: 24183564
J Am Coll Cardiol. 2016 May 17;67(19):2224-2234
pubmed: 27079334
J Am Coll Cardiol. 2019 Mar 26;73(11):1317-1335
pubmed: 30898208
Circulation. 2012 Jun 12;125(23):2873-91
pubmed: 22586281
EuroIntervention. 2018 Jan 20;13(13):1540-1553
pubmed: 29061550
Int J Cardiol. 2019 Sep 1;290:64-69
pubmed: 30971372
Am J Cardiol. 2019 May 15;123(10):1610-1619
pubmed: 30846212
Lancet. 2016 Nov 26;388(10060):2607-2617
pubmed: 27806902
Circ Cardiovasc Interv. 2020 Mar;13(3):e008325
pubmed: 32102566
Eur Heart J Qual Care Clin Outcomes. 2021 Sep 16;7(5):476-485
pubmed: 32392283
J Am Coll Cardiol. 2016 Oct 25;68(17):1851-1864
pubmed: 27595509
JACC Cardiovasc Interv. 2013 Dec;6(12):1242-9
pubmed: 24355114
J Cardiovasc Med (Hagerstown). 2015 Mar;16(3):238-45
pubmed: 25111771
Lancet. 2013 Nov 23;382(9906):1714-22
pubmed: 24004642
Coron Artery Dis. 2020 Aug;31(5):438-445
pubmed: 32040027
EuroIntervention. 2009 Mar;4(5):654-61
pubmed: 19378688
Eur Heart J. 2016 Jun 21;37(24):1923-8
pubmed: 27161619
Eur Heart J. 2020 May 7;41(18):1747-1756
pubmed: 31923316
J Am Coll Cardiol. 2019 Feb 26;73(7):741-754
pubmed: 30784667
Minerva Cardiol Angiol. 2022 Feb;70(1):92-101
pubmed: 34713677
Eur Heart J. 2017 Feb 14;38(7):500-507
pubmed: 27252451
Rev Esp Cardiol (Engl Ed). 2019 Mar;72(3):215-223
pubmed: 30029980
Am J Cardiol. 2017 Apr 1;119(7):978-982
pubmed: 28131320