Carotid doppler ultrasonography as a method to predict fluid responsiveness in mechanically ventilated children.
children
doppler ultrasound
fluid responsiveness
fluid therapy
hemodynamic monitoring
Journal
Paediatric anaesthesia
ISSN: 1460-9592
Titre abrégé: Paediatr Anaesth
Pays: France
ID NLM: 9206575
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
31
05
2022
received:
22
04
2022
accepted:
19
06
2022
pubmed:
25
6
2022
medline:
9
8
2022
entrez:
24
6
2022
Statut:
ppublish
Résumé
The aim of this study was to investigate whether respiratory variations in carotid and aortic blood flows measured by Doppler ultrasonography could accurately predict fluid responsiveness in critically ill children. This was a prospective single-center study including mechanically ventilated children who underwent fluid replacement at the discretion of the attending physician. Response to fluid load was defined by a stroke volume increase of more than 15%. Maximum and minimum values of velocity peaks were determined over one controlled respiratory cycle before and after volume expansion. Respiratory changes in velocity peak of the carotid (∆Vpeak_Ca) and aortic (∆Vpeak_Ao) blood flows were calculated as the difference between the maximum and minimum values divided by the mean of the two values and were expressed as a percentage. A total of 30 patients were included, of which twelve (40%) were fluid responders and 18 (60%) non-responders. Before volume expansion, both ∆Vpeak_Ca and ∆Vpeak_Ao were higher in responders than in non-responders (17.1% vs 4.4%; p < .001 and 22.8% vs 6.4%; p < .001, respectively). ∆Vpeak_Ca could effectively predict fluid responsiveness (AUC 1.00, 95% CI 0.88-1.00), as well as ∆Vpeak_Ao (AUC 0.94, 95% CI 0.80-0.99). The best cutoff values were 10.6% for ∆Vpeak_Ca (sensitivity, specificity, positive predictive value and negative predictive value of 100%) and 18.2% for ∆Vpeak_Ao (sensitivity, 91.7%; specificity, 88.9%; positive predictive value, 84.6%; negative predictive value, 94.1%). Volume expansion-induced changes in stroke volume correlated with the ∆Vpeak_Ca and ∆Vpeak_Ao before volume expansion (ρ of 0.70 and 0.61, respectively; p < .001 for both). Analysis of respiratory changes in carotid and aortic blood flows are accurate methods for predicting fluid responsiveness in children under invasive mechanical ventilation.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1038-1046Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
Alobaidi R, Morgan C, Basu RK, et al. Association between fluid balance and outcomes in critically ill children: a systematic review and meta-analysis. JAMA Pediatr. 2018;172(3):257-268. doi:10.1001/jamapediatrics.2017.4540
Gan H, Cannesson M, Chandler JR, Ansermino JM. Predicting fluid responsiveness in children: a systematic review. Anesth Analg. 2013;117(6):1380-1392. doi:10.1213/ANE.0b013e3182a9557e
Durand P, Chevret L, Essouri S, Haas V, Devictor D. Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Med. 2008;34(5):888-894. doi:10.1007/S00134-008-1021-Z
Ranjit S, Natraj R, Kissoon N, Thiagarajan R, Ramakrishnan B, Garciá MIM. Variability in the physiologic response to fluid bolus in pediatric patients following cardiac surgery. Crit Care Med. 2020;48(11):E1062-E1070. doi:10.1097/CCM.0000000000004621
Ranjit S, Natraj R, Kissoon N, Thiagarajan RR, Ramakrishnan B, Monge García MI. Variability in the hemodynamic response to fluid bolus in pediatric septic shock. Pediatr Crit Care Med. 2021;22(8):E448-E458. doi:10.1097/PCC.0000000000002714
Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):E52-E106. doi:10.1097/PCC.0000000000002198
Dave C, Shen J, Chaudhuri D, et al. Dynamic assessment of fluid responsiveness in surgical ICU patients through stroke volume variation is associated with decreased length of stay and costs: a systematic review and meta-analysis. J Intensive Care Med. 2020;35(1):14-23. doi:10.1177/0885066618805410
De Souza Neto EP, Grousson S, Duflo F, et al. Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. Br J Anaesth. 2011;106(6):856-864. doi:10.1093/BJA/AER090
Vieillard-Baron A, Millington SJ, Sanfilippo F, et al. A decade of progress in critical care echocardiography: a narrative review. Intensive Care Med. 2019;45(6):770-788. doi:10.1007/S00134-019-05604-2
Desgranges FP, Desebbe O, de Souza P, Neto E, Raphael D, Chassard D. Respiratory variation in aortic blood flow peak velocity to predict fluid responsiveness in mechanically ventilated children: a systematic review and meta-analysis. Pediatr Anesth. 2016;26(1):37-47. doi:10.1111/PAN.12803
Vignon P. Hemodynamic assessment of critically ill patients using echocardiography doppler. Curr Opin Crit Care. 2005;11(3):227-234. doi:10.1097/01.CCX.0000159946.89658.51
Ibarra-Estrada M, López-Pulgarín JA, Mijangos-Méndez JC, Díaz-Gómez JL, Aguirre-Avalos G. Respiratory variation in carotid peak systolic velocity predicts volume responsiveness in mechanically ventilated patients with septic shock: a prospective cohort study. Crit Ultrasound J. 2015;7(1):1-9. doi:10.1186/S13089-015-0029-1
Song Y, Kwak YL, Song JW, Kim YJ, Shim JK. Respirophasic carotid artery peak velocity variation as a predictor of fluid responsiveness in mechanically ventilated patients with coronary artery disease. Br J Anaesth. 2014;113(1):61-66. doi:10.1093/BJA/AEU057
Rubio AJ, de Souza LL, Nogueira RJN, Brandão MB, de Souza TH. Carotid doppler ultrasonography for hemodynamic assessment in critically ill children. Pediatr Cardiol. 2021;1:1-9. doi:10.1007/S00246-021-02732-9
Kim EH, Lee JH, Song IK, Kim HS, Jang YE, Kim JT. Respiratory variation of internal carotid artery blood flow peak velocity measured by transfontanelle ultrasound to predict fluid responsiveness in infantsa prospective observational study. Anesthesiology. 2019;130(5):719-727. doi:10.1097/ALN.0000000000002526
Singh A, Kumar B, Puri GD, Thingnam SKS, Negi SL, Niyogi SG. Utility of transfontanelle ultrasound in predicting the fluid responsiveness in children after repair of congenital heart diseases: a prospective observational study. J Cardiothorac Vasc Anesth. 2022;36(8):2358-2364. doi:10.1053/J.JVCA.2022.01.035
Renner J, Broch O, Duetschke P, et al. Prediction of fluid responsiveness in infants and neonates undergoing congenital heart surgery. Br J Anaesth. 2012;108(1):108-115. doi:10.1093/BJA/AER371
Choi DY, Kwak HJ, Park HY, Kim YB, Choi CH, Lee JY. Respiratory variation in aortic blood flow velocity as a predictor of fluid responsiveness in children after repair of ventricular septal defect. Pediatr Cardiol. 2010;31(8):1166-1170. doi:10.1007/S00246-010-9776-8
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837. doi:10.2307/2531595
Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013;143(2):364-370. doi:10.1378/CHEST.12-1274
Beier L, Davis J, Esener D, Grant C, Fields JM. Carotid ultrasound to predict fluid responsiveness. J Ultrasound Med. 2020;39(10):1965-1976. doi:10.1002/JUM.15301
De Souza TH, Brandão MB, Nadal JAH, Nogueira RJN. Ultrasound guidance for pediatric central venous catheterization: a meta-analysis. Pediatrics. 2018;142(5):e20181719. doi:10.1542/peds.2018-1719
Lemson J, Nusmeier A, Van Der Hoeven JG. Advanced hemodynamic monitoring in critically ill children. Pediatrics. 2011;128(3):560-571. doi:10.1542/PEDS.2010-2920
Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774-1781. doi:10.1097/CCM.0B013E31828A25FD
Byon HJ, Lim CW, Lee JH, et al. Prediction of fluid responsiveness in mechanically ventilated children undergoing neurosurgery. Br J Anaesth. 2013;110(4):586-591. doi:10.1093/BJA/AES467
Perner A, Faber T. Stroke volume variation does not predict fluid responsiveness in patients with septic shock on pressure support ventilation. Acta Anaesthesiol Scand. 2006;50(9):1068-1073. doi:10.1111/J.1399-6576.2006.01120.X
De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31(4):517-523. doi:10.1007/S00134-005-2586-4
Reuter DA, Bayerlein J, Goepfert MSG, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29(3):476-480. doi:10.1007/S00134-003-1649-7
Mahjoub Y, Pila C, Friggeri A, et al. Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by doppler echocardiographic evaluation of the right ventricle. Crit Care Med. 2009;37(9):2570-2575. doi:10.1097/CCM.0B013E3181A380A3
Wyler von Ballmoos M, Takala J, Roeck M, et al. Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study. Crit Care. 2010;14(3):1-9. doi:10.1186/CC9060
Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38(3):422-428. doi:10.1007/S00134-011-2457-0
Monge García MI, Guijo González P, Gracia Romero M, et al. Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med. 2015;41(7):1247-1255. doi:10.1007/S00134-015-3898-7
Chew MS, Poelaert J. Accuracy and repeatability of pediatric cardiac output measurement using doppler: 20-year review of the literature. Intensive Care Med. 2003;29(11):1889-1894. doi:10.1007/s00134-003-1967-9
Whiting PF, Rutjes AWS, Westwood ME, et al. Quadas-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-536. doi:10.7326/0003-4819-155-8-201110180-00009