Dynamic Measurements of Cerebral Blood Flow Responses to Cortical Spreading Depolarization in the Murine Endovascular Perforation Subarachnoid Hemorrhage Model.

Cerebral blood flow Cortical spreading depolarization Cortical spreading ischemia Delayed cerebral ischemia Local field potential Subarachnoid hemorrhage

Journal

Translational stroke research
ISSN: 1868-601X
Titre abrégé: Transl Stroke Res
Pays: United States
ID NLM: 101517297

Informations de publication

Date de publication:
08 2023
Historique:
received: 15 03 2022
accepted: 10 06 2022
revised: 30 05 2022
medline: 29 6 2023
pubmed: 25 6 2022
entrez: 24 6 2022
Statut: ppublish

Résumé

Delayed cerebral ischemia (DCI) is the most severe complication after subarachnoid hemorrhage (SAH), and cortical spreading depolarization (CSD) is believed to play a vital role in it. However, the dynamic changes in cerebral blood flow (CBF) in response to CSD in typical SAH models have not been well investigated. Here, SAH was established in mice with endovascular perforation. Subsequently, the spontaneous CBF dropped instantly and then returned to baseline rapidly. After KCl application to the cortex, subsequent hypoperfusion waves occurred across the groups, while a lower average perfusion level was found in the SAH groups (days 1-7). Moreover, in the SAH groups, the number of CSD decreased within day 7, and the duration and spreading velocity of the CSD increased within day 3 and day 14, respectively. Next, we continuously monitored the local field potential (LFP) in the prefrontal cortex. The results showed that the decrease in the percentage of gamma oscillations lasted throughout the whole process in the SAH group. In the chronic phase after SAH, we found that the mice still had cognitive deficits but experienced no obvious tissue damage. In summary, SAH negatively affects the CBF responses to CSD and the spontaneous LFP activity and causes long-term cognitive deficits in mice. Based on these findings, in the specific phase after SAH, DCI is induced or exacerbated more easily by potential causers of CSD in clinical practice (edema, erythrocytolysis, inflammation), which may lead to neurological deterioration.

Identifiants

pubmed: 35749033
doi: 10.1007/s12975-022-01052-1
pii: 10.1007/s12975-022-01052-1
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

530-544

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet (London, England). 2017;389(10069):655–66. https://doi.org/10.1016/s0140-6736(16)30668-7 .
doi: 10.1016/s0140-6736(16)30668-7 pubmed: 27637674
Neifert SN, Chapman EK, Martini ML, Shuman WH, Schupper AJ, Oermann EK, et al. Aneurysmal subarachnoid hemorrhage: the last decade. Transl Stroke Res. 2021;12(3):428–46. https://doi.org/10.1007/s12975-020-00867-0 .
doi: 10.1007/s12975-020-00867-0 pubmed: 33078345
Megjhani M, Terilli K, Weiss M, Savarraj J, Chen LH, Alkhachroum A, et al. Dynamic detection of delayed cerebral ischemia: a study in 3 centers. Stroke. 2021;52(4):1370–9. https://doi.org/10.1161/strokeaha.120.032546 .
doi: 10.1161/strokeaha.120.032546 pubmed: 33596676 pmcid: 8247633
Francoeur CL, Mayer SA. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit Care. 2016;20(1):277. https://doi.org/10.1186/s13054-016-1447-6 .
doi: 10.1186/s13054-016-1447-6 pubmed: 27737684 pmcid: 5064957
Brathwaite S, Macdonald RL. Current management of delayed cerebral ischemia: update from results of recent clinical trials. Transl Stroke Res. 2014;5(2):207–26. https://doi.org/10.1007/s12975-013-0316-8 .
doi: 10.1007/s12975-013-0316-8 pubmed: 24338266
Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10(1):44–58. https://doi.org/10.1038/nrneurol.2013.246 .
doi: 10.1038/nrneurol.2013.246 pubmed: 24323051
Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17(4):439–47. https://doi.org/10.1038/nm.2333 .
doi: 10.1038/nm.2333 pubmed: 21475241
Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev. 2015;95(3):953–93. https://doi.org/10.1152/physrev.00027.2014 .
doi: 10.1152/physrev.00027.2014 pubmed: 26133935 pmcid: 4491545
Dreier JP, Lemale CL, Kola V, Friedman A, Schoknecht K. Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology. 2018;134(Pt B):189–207. https://doi.org/10.1016/j.neuropharm.2017.09.027 .
doi: 10.1016/j.neuropharm.2017.09.027 pubmed: 28941738
Kirov SA, Fomitcheva IV, Sword J. Rapid neuronal ultrastructure disruption and recovery during spreading depolarization-induced cytotoxic edema. Cerebral cortex (New York, NY: 1991). 2020;30(10):5517–31. https://doi.org/10.1093/cercor/bhaa134 .
doi: 10.1093/cercor/bhaa134 pmcid: 7566686
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, et al. Migraine aura, transient ischemic attacks, stroke, and dying of the brain share the same key pathophysiological process in neurons driven by Gibbs-Donnan forces, namely spreading depolarization. Front Cell Neurosci. 2022;16: 837650. https://doi.org/10.3389/fncel.2022.837650 .
doi: 10.3389/fncel.2022.837650 pmcid: 8884062
Dreier JP, Körner K, Ebert N, Görner A, Rubin I, Back T, et al. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J Cerebral Blood Flow Metab : Off J Int Soc Cerebral Blood Flow Metab. 1998;18(9):978–90. https://doi.org/10.1097/00004647-199809000-00007 .
doi: 10.1097/00004647-199809000-00007 pubmed: 9740101
Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain : a journal of neurology. 2009;132(Pt 7):1866–81. https://doi.org/10.1093/brain/awp102 .
doi: 10.1093/brain/awp102 pubmed: 19420089
Dreier JP, Ebert N, Priller J, Megow D, Lindauer U, Klee R, et al. Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg. 2000;93(4):658–66. https://doi.org/10.3171/jns.2000.93.4.0658 .
doi: 10.3171/jns.2000.93.4.0658 pubmed: 11014545
Dreier JP, Petzold G, Tille K, Lindauer U, Arnold G, Heinemann U, et al. Ischaemia triggered by spreading neuronal activation is inhibited by vasodilators in rats. J Physiol. 2001;531(Pt 2):515–26. https://doi.org/10.1111/j.1469-7793.2001.0515i.x .
doi: 10.1111/j.1469-7793.2001.0515i.x pubmed: 11230523 pmcid: 2278483
Dreier JP, Windmüller O, Petzold G, Lindauer U, Einhäupl KM, Dirnagl U. Ischemia triggered by red blood cell products in the subarachnoid space is inhibited by nimodipine administration or moderate volume expansion/hemodilution in rats. Neurosurgery. 2002;51(6):1457–65; discussion 65–7.
Hartings JA, Strong AJ, Fabricius M, Manning A, Bhatia R, Dreier JP, et al. Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma. 2009;26(11):1857–66. https://doi.org/10.1089/neu.2009.0961 .
doi: 10.1089/neu.2009.0961 pubmed: 19508156 pmcid: 2865988
Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev. 2001;81(3):1065–96. https://doi.org/10.1152/physrev.2001.81.3.1065 .
doi: 10.1152/physrev.2001.81.3.1065 pubmed: 11427692
Takano T, Tian GF, Peng W, Lou N, Lovatt D, Hansen AJ, et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci. 2007;10(6):754–62. https://doi.org/10.1038/nn1902 .
doi: 10.1038/nn1902 pubmed: 17468748
Lückl J, Lemale CL, Kola V, Horst V, Khojasteh U, Oliveira-Ferreira AI, et al. The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain : a journal of neurology. 2018;141(6):1734–52. https://doi.org/10.1093/brain/awy102 .
doi: 10.1093/brain/awy102 pubmed: 29668855
Hartings JA, York J, Carroll CP, Hinzman JM, Mahoney E, Krueger B, et al. Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain. 2017;140(10):2673–90. https://doi.org/10.1093/brain/awx214 .
doi: 10.1093/brain/awx214 pubmed: 28969382 pmcid: 5841026
Hamming AM, Wermer MJH, Umesh Rudrapatna S, Lanier C, van Os HJA, van den Bergh WM, et al. Spreading depolarizations increase delayed brain injury in a rat model of subarachnoid hemorrhage. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2016;36(7):1224–31. https://doi.org/10.1177/0271678x15619189 .
doi: 10.1177/0271678x15619189 pubmed: 26661246
Tang Y, She D, Li P, Pan L, Lu J, Liu P. Cortical spreading depression aggravates early brain injury in a mouse model of subarachnoid hemorrhage. J Biophotonics. 2021;14(4): e202000379. https://doi.org/10.1002/jbio.202000379 .
doi: 10.1002/jbio.202000379 pubmed: 33332747
Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 2006;129(Pt 12):3224–37. https://doi.org/10.1093/brain/awl297 .
doi: 10.1093/brain/awl297 pubmed: 17067993
Kawano A, Sugimoto K, Nomura S, Inoue T, Kawano R, Oka F, et al. Association between spreading depolarization and delayed cerebral ischemia after subarachnoid hemorrhage: post hoc analysis of a randomized trial of the effect of cilostazol on delayed cerebral ischemia. Neurocrit Care. 2021;35(Suppl 2):91–9. https://doi.org/10.1007/s12028-021-01330-0 .
doi: 10.1007/s12028-021-01330-0 pubmed: 34462881
Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410 .
Pang J, Peng J, Matei N, Yang P, Kuai L, Wu Y, et al. Apolipoprotein E exerts a whole-brain protective property by promoting M1? Microglia quiescence after experimental subarachnoid hemorrhage in mice. Transl Stroke Res. 2018;9(6):654–68. https://doi.org/10.1007/s12975-018-0665-4 .
doi: 10.1007/s12975-018-0665-4 pubmed: 30225551
Liu H, He J, Zhang Z, Liu L, Huo G, Sun X, et al. Evolution of cerebral perfusion in the peri-contusional cortex in mice revealed by in vivo laser speckle imaging after traumatic brain injury. Brain Res. 2018;1700:118–25. https://doi.org/10.1016/j.brainres.2018.07.006 .
doi: 10.1016/j.brainres.2018.07.006 pubmed: 29990491
Obrenovitch TP, Chen S, Farkas E. Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods. Neuroimage. 2009;45(1):68–74. https://doi.org/10.1016/j.neuroimage.2008.11.025 .
doi: 10.1016/j.neuroimage.2008.11.025 pubmed: 19100842
Lin L, Chen G, Xie K, Zaia KA, Zhang S, Tsien JZ. Large-scale neural ensemble recording in the brains of freely behaving mice. J Neurosci Methods. 2006;155(1):28–38. https://doi.org/10.1016/j.jneumeth.2005.12.032 .
doi: 10.1016/j.jneumeth.2005.12.032 pubmed: 16554093
Liu L, Deng H, Tang X, Lu Y, Zhou J, Wang X, et al. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc Natl Acad Sci U S A. 2021;118(31). https://doi.org/10.1073/pnas.2105838118 .
Zhou C, Chen H, Zheng JF, Guo ZD, Huang ZJ, Wu Y, et al. Pentraxin 3 contributes to neurogenesis after traumatic brain injury in mice. Neural Regen Res. 2020;15(12):2318–26. https://doi.org/10.4103/1673-5374.285001 .
doi: 10.4103/1673-5374.285001 pubmed: 32594056 pmcid: 7749468
Chen S, Peng J, Sherchan P, Ma Y, Xiang S, Yan F, et al. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. J Neuroinflammation. 2020;17(1):168. https://doi.org/10.1186/s12974-020-01853-x .
doi: 10.1186/s12974-020-01853-x pubmed: 32466767 pmcid: 7257134
Carlén M. What constitutes the prefrontal cortex? Science. 2017;358(6362):478–82. https://doi.org/10.1126/science.aan8868 .
doi: 10.1126/science.aan8868 pubmed: 29074767
Lai JH, Qin T, Sakadžić S, Ayata C, Chung DY. Cortical spreading depolarizations in a mouse model of subarachnoid hemorrhage. Neurocrit Care. 2022. https://doi.org/10.1007/s12028-021-01397-9 .
doi: 10.1007/s12028-021-01397-9 pubmed: 35355216
Zheng Z, Schoell M, Sanchez-Porras R, Diehl C, Unterberg A, Sakowitz OW. Spreading depolarization during the acute stage of experimental subarachnoid hemorrhage in mice. Acta Neurochir Suppl. 2020;127:97–103. https://doi.org/10.1007/978-3-030-04615-6_16 .
doi: 10.1007/978-3-030-04615-6_16 pubmed: 31407070
Oka F, Hoffmann U, Lee JH, Shin HK, Chung DY, Yuzawa I, et al. Requisite ischemia for spreading depolarization occurrence after subarachnoid hemorrhage in rodents. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2017;37(5):1829–40. https://doi.org/10.1177/0271678x16659303 .
doi: 10.1177/0271678x16659303 pubmed: 27432225
Conzen C, Becker K, Albanna W, Weiss M, Bach A, Lushina N, et al. The acute phase of experimental subarachnoid hemorrhage: intracranial pressure dynamics and their effect on cerebral blood flow and autoregulation. Transl Stroke Res. 2019;10(5):566–82. https://doi.org/10.1007/s12975-018-0674-3 .
doi: 10.1007/s12975-018-0674-3 pubmed: 30443885
Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K. Time-course of cerebral perfusion and tissue oxygenation in the first 6 h after experimental subarachnoid hemorrhage in rats. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2009;29(4):771–9. https://doi.org/10.1038/jcbfm.2008.169 .
doi: 10.1038/jcbfm.2008.169 pubmed: 19156162
Megyesi JF, Vollrath B, Cook DA, Findlay JM. In vivo animal models of cerebral vasospasm: a review. Neurosurgery. 2000;46(2):448–60; discussion 60–1.
van den Maagdenberg AM, Pizzorusso T, Kaja S, Terpolilli N, Shapovalova M, Hoebeek FE, et al. High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann Neurol. 2010;67(1):85–98. https://doi.org/10.1002/ana.21815 .
Merkler D, Klinker F, Jürgens T, Glaser R, Paulus W, Brinkmann BG, et al. Propagation of spreading depression inversely correlates with cortical myelin content. Ann Neurol. 2009;66(3):355–65. https://doi.org/10.1002/ana.21746 .
doi: 10.1002/ana.21746 pubmed: 19798729
Milakara D, Grozea C, Dahlem M, Major S, Winkler MKL, Lückl J, et al. Simulation of spreading depolarization trajectories in cerebral cortex: correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage. NeuroImage Clinical. 2017;16:524–38. https://doi.org/10.1016/j.nicl.2017.09.005 .
doi: 10.1016/j.nicl.2017.09.005 pubmed: 28948141 pmcid: 5602748
Ohta OOK SM, Yamamoto M, Shimizu K, Toda N. Cerebral vasospasm following ruptured intracranial aneurysms, especially some contributions of potassium ion released from subarachnoid hematoma to delayed cerebral vasospasm. In: JA B, editor. In Vascular Neuroeffector Mechanisms: 4th International Symposium. New York: Raven1983. p. 353 – 8.
Antunes AP, Schiefecker AJ, Beer R, Pfausler B, Sohm F, Fischer M, et al. Higher brain extracellular potassium is associated with brain metabolic distress and poor outcome after aneurysmal subarachnoid hemorrhage. Crit Care. 2014;18(3):R119. https://doi.org/10.1186/cc13916 .
doi: 10.1186/cc13916 pubmed: 24920041 pmcid: 4229847
Macdonald RL, Weir BK. A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke. 1991;22(8):971–82. https://doi.org/10.1161/01.str.22.8.971 .
doi: 10.1161/01.str.22.8.971 pubmed: 1866764
Geraghty JR, Testai FD. Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr Atheroscler Rep. 2017;19(12):50. https://doi.org/10.1007/s11883-017-0690-x .
doi: 10.1007/s11883-017-0690-x pubmed: 29063300
Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents–EEG, ECoG. LFP and spikes Nat Rev Neurosci. 2012;13(6):407–20. https://doi.org/10.1038/nrn3241 .
doi: 10.1038/nrn3241 pubmed: 22595786
Yamamoto J, Suh J, Takeuchi D, Tonegawa S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell. 2014;157(4):845–57. https://doi.org/10.1016/j.cell.2014.04.009 .
doi: 10.1016/j.cell.2014.04.009 pubmed: 24768692
Gao N, Wang H, Xu X, Yang Z, Zhang T. Angiotensin II induces cognitive decline and anxiety-like behavior via disturbing pattern of theta-gamma oscillations. Brain Res Bull. 2021;174:84–91. https://doi.org/10.1016/j.brainresbull.2021.06.002 .
doi: 10.1016/j.brainresbull.2021.06.002 pubmed: 34090935
Sauer JF, Strüber M, Bartos M. Impaired fast-spiking interneuron function in a genetic mouse model of depression. Elife. 2015;4. https://doi.org/10.7554/eLife.04979 .
Cao W, Lin S, Xia QQ, Du YL, Yang Q, Zhang MY, et al. Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron. 2018;97(6):1253-60.e7. https://doi.org/10.1016/j.neuron.2018.02.001 .
doi: 10.1016/j.neuron.2018.02.001 pubmed: 29503190
Al-Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41(8):e519–36. https://doi.org/10.1161/strokeaha.110.581975 .
doi: 10.1161/strokeaha.110.581975 pubmed: 20595669
Regnier-Golanov AS, Gulinello M, Hernandez MS, Golanov EV, Britz GW. Subarachnoid hemorrhage induces sub-acute and early chronic impairment in learning and memory in mice. Transl Stroke Res. 2022. https://doi.org/10.1007/s12975-022-00987-9 .
doi: 10.1007/s12975-022-00987-9 pubmed: 35260988
Dreier JP, Reiffurth C. The stroke-migraine depolarization continuum. Neuron. 2015;86(4):902–22. https://doi.org/10.1016/j.neuron.2015.04.004 .
doi: 10.1016/j.neuron.2015.04.004 pubmed: 25996134

Auteurs

Jin Yan (J)

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China.

Wenlang Li (W)

Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Chao Zhou (C)

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China.

Na Wu (N)

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China.

Xiaomin Yang (X)

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China.

Qiuling Pan (Q)

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China.

Tao He (T)

Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Yue Wu (Y)

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China.

Zongduo Guo (Z)

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China.

Yongzhi Xia (Y)

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China.

Xiaochuan Sun (X)

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China. sunxiaochuan@cqmu.edu.cn.

Chongjie Cheng (C)

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China. chengcj@hospital.cqmu.edu.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH