Leptin Attenuates Fear Memory by Inhibiting Astrocytic NLRP3 Inflammasome in Post-traumatic Stress Disorder Model.


Journal

Neurochemical research
ISSN: 1573-6903
Titre abrégé: Neurochem Res
Pays: United States
ID NLM: 7613461

Informations de publication

Date de publication:
Apr 2023
Historique:
received: 27 05 2022
accepted: 08 06 2022
pubmed: 25 6 2022
medline: 24 3 2023
entrez: 24 6 2022
Statut: ppublish

Résumé

Accumulating evidence suggests that the activation of nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome contributes to the pathophysiology of post-traumatic stress disorder (PTSD). Astrocytes, the homeostatic cells of the central nervous system are intimately involved into pathophysiology of various mental disorders including PTSD. We demonstrated previously that leptin exerts neuroprotection and ameliorates chronic sleep deprivation-induced depressive-like behaviours. Here, we extended the study of therapeutic effects of leptin to PTSD model mice. We discovered that PTSD is associated with significant activation of NLRP3 inflammasome in astrocytes sorted from GFAP-GFP transgenic mice, while administration of leptin markedly suppressed the activation of astrocytic NLRP3 inflammasome. Leptin effectively improved PTSD-associated behavioural alterations including fear memory, cognitive impairments, and depressive-like behaviours. Therapeutic effects of leptin were mediated by the signal transducer and activator of transcription 3 (STAT3) in astrocytes. In addition, the PTSD-related activation of NLRP3 inflammasome impairs astrocytic mitochondria suppressing ATP synthesis and leading to an increased ROS production. Leptin reversed mitochondrial inhibition by stimulating STAT3 in astrocytes. We propose leptin as a novel candidate for the pharmacological treatment of PTSD.

Identifiants

pubmed: 35750877
doi: 10.1007/s11064-022-03655-4
pii: 10.1007/s11064-022-03655-4
doi:

Substances chimiques

Inflammasomes 0
NLR Family, Pyrin Domain-Containing 3 Protein 0
Leptin 0
Nlrp3 protein, mouse 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1180-1190

Subventions

Organisme : National Natural Science Foundation of China
ID : 81871852
Organisme : Shenyang Science and Technology Innovation Talents Project
ID : RC210251
Organisme : Wellcome Trust
ID : 202078
Pays : United Kingdom
Organisme : 'ChunHui' Program of Education Ministry
ID : 2020703
Organisme : Wellcome Trust
ID : 202078
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Bryant RA (2019) Post-traumatic stress disorder: a state-of-the-art review of evidence and challenges. World Psychiatry 18:259–269. https://doi.org/10.1002/wps.20656
doi: 10.1002/wps.20656 pubmed: 31496089 pmcid: 6732680
Gayle MC, Raskin JD (2017) DSM-5: do counselors really want an alternative? J Humanist Psychol 57:650–666
doi: 10.1177/0022167817696839
Li B, Zhang D, Verkhratsky A (2022) Astrocytes in post-traumatic stress disorder. Neurosci Bull. https://doi.org/10.1007/s12264-022-00845-6
doi: 10.1007/s12264-022-00845-6 pubmed: 36575352 pmcid: 9905479
Taylor S, Thordarson DS, Maxfield L, Fedoroff IC, Lovell K, Ogrodniczuk J (2003) Comparative efficacy, speed, and adverse effects of three PTSD treatments: exposure therapy, EMDR, and relaxation training. J Consult Clin Psychol 71:330–338. https://doi.org/10.1037/0022-006x.71.2.330
doi: 10.1037/0022-006x.71.2.330 pubmed: 12699027
Watts BV, Schnurr PP, Mayo L, Young-Xu Y, Weeks WB, Friedman MJ (2013) Meta-analysis of the efficacy of treatments for posttraumatic stress disorder. J Clin Psychiatry 74:e541-550. https://doi.org/10.4088/JCP.12r08225
doi: 10.4088/JCP.12r08225 pubmed: 23842024
Ghosh S, Mohammed Z, Singh I (2021) Bruton’s tyrosine kinase drives neuroinflammation and anxiogenic behavior in mouse models of stress. J Neuroinflamm 18:289. https://doi.org/10.1186/s12974-021-02322-9
doi: 10.1186/s12974-021-02322-9
Mellon SH, Gautam A, Hammamieh R, Jett M, Wolkowitz OM (2018) Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biol Psychiatry 83:866–875. https://doi.org/10.1016/j.biopsych.2018.02.007
doi: 10.1016/j.biopsych.2018.02.007 pubmed: 29628193
Sumner JA, Nishimi KM, Koenen KC, Roberts AL, Kubzansky LD (2020) Posttraumatic stress disorder and inflammation: untangling issues of bidirectionality. Biol Psychiatry 87:885–897. https://doi.org/10.1016/j.biopsych.2019.11.005
doi: 10.1016/j.biopsych.2019.11.005 pubmed: 31932029
Carlsson J, Sandahl H (2022) Psychotherapeutic and psychopharmacological treatment of PTSD. Ugeskr Laeger 184:V11210872
pubmed: 35410657
Bonne O, Gill JM, Luckenbaugh DA, Collins C, Owens MJ, Alesci S, Neumeister A, Yuan P, Kinkead B, Manji HK, Charney DS, Vythilingam M (2011) Corticotropin-releasing factor, interleukin-6, brain-derived neurotrophic factor, insulin-like growth factor-1, and substance P in the cerebrospinal fluid of civilians with posttraumatic stress disorder before and after treatment with paroxetine. J Clin Psychiatry 72:1124–1128. https://doi.org/10.4088/JCP.09m05106blu
doi: 10.4088/JCP.09m05106blu pubmed: 21208596
Sagarwala R, Nasrallah HA (2019) Changes in inflammatory biomarkers before and after SSRI therapy in PTSD: a review. Ann Clin Psychiatry 31:292–297
pubmed: 31675389
Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016
doi: 10.1152/physrev.00042.2016 pubmed: 29351512
Izquierdo I, Furini CR, Myskiw JC (2016) Fear Memory. Physiol Rev 96:695–750. https://doi.org/10.1152/physrev.00018.2015
doi: 10.1152/physrev.00018.2015 pubmed: 26983799
Li B, Zhang S, Li M, Zhang H, Hertz L, Peng L (2009) Down-regulation of GluK2 kainate receptor expression by chronic treatment with mood-stabilizing anti-convulsants or lithium in cultured astrocytes and brain, but not in neurons. Neuropharmacology 57:375–385. https://doi.org/10.1016/j.neuropharm.2009.07.004
doi: 10.1016/j.neuropharm.2009.07.004 pubmed: 19596362
Li Y, Li L, Wu J, Zhu Z, Feng X, Qin L, Zhu Y, Sun L, Liu Y, Qiu Z, Duan S, Yu YQ (2020) Activation of astrocytes in hippocampus decreases fear memory through adenosine A(1) receptors. Elife. https://doi.org/10.7554/eLife.57155
doi: 10.7554/eLife.57155 pubmed: 33357376 pmcid: 7781594
Xia M, Li X, Yang L, Ren J, Sun G, Qi S, Verkhratsky A, Li B (2017) The ameliorative effect of fluoxetine on neuroinflammation induced by sleep deprivation. J Neurochem. https://doi.org/10.1111/jnc.14272
doi: 10.1111/jnc.14272 pubmed: 29222907
Xia M, Li Z, Li S, Liang S, Li X, Chen B, Zhang M, Dong C, Verkhratsky A, Guan D, Li B (2020) Sleep deprivation selectively down-regulates astrocytic 5-HT(2B) receptors and triggers depressive-like behaviors via stimulating P2X(7) receptors in mice. Neurosci Bull 36:1259–1270. https://doi.org/10.1007/s12264-020-00524-4
doi: 10.1007/s12264-020-00524-4 pubmed: 32506374 pmcid: 7674526
Xia M, Yang L, Sun G, Qi S, Li B (2017) Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology 234:365–379. https://doi.org/10.1007/s00213-016-4473-9
doi: 10.1007/s00213-016-4473-9 pubmed: 27837334
Han F, Xiao B, Wen L (2015) Loss of glial cells of the hippocampus in a rat model of post-traumatic stress disorder. Neurochem Res 40:942–951. https://doi.org/10.1007/s11064-015-1549-6
doi: 10.1007/s11064-015-1549-6 pubmed: 25749890
Perez-Urrutia N, Mendoza C, Alvarez-Ricartes N, Oliveros-Matus P, Echeverria F, Grizzell JA, Barreto GE, Iarkov A, Echeverria V (2017) Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP+ cells loss induced by restraint stress in mice. Exp Neurol 295:211–221. https://doi.org/10.1016/j.expneurol.2017.06.016
doi: 10.1016/j.expneurol.2017.06.016 pubmed: 28625590
Saur L, Baptista PP, Bagatini PB, Neves LT, de Oliveira RM, Vaz SP, Ferreira K, Machado SA, Mestriner RG, Xavier LL (2016) Experimental post-traumatic stress disorder decreases astrocyte density and changes astrocytic polarity in the CA1 hippocampus of male rats. Neurochem Res 41:892–904. https://doi.org/10.1007/s11064-015-1770-3
doi: 10.1007/s11064-015-1770-3 pubmed: 26577396
Li X, Liang S, Li Z, Li S, Xia M, Verkhratsky A, Li B (2018) Leptin increases expression of 5-HT(2B) receptors in astrocytes thus enhancing action of fluoxetine on the depressive behavior induced by sleep deprivation. Front Psychiatry 9:734. https://doi.org/10.3389/fpsyt.2018.00734
doi: 10.3389/fpsyt.2018.00734 pubmed: 30666218
Li B, Qi S, Sun G, Yang L, Han J, Zhu Y, Xia M (2016) Leptin suppresses adenosine triphosphate-induced impairment of spinal cord astrocytes. J Neurosci Res 94:924–935. https://doi.org/10.1002/jnr.23795
doi: 10.1002/jnr.23795 pubmed: 27316329
Ren J, Li X, Sun G, Li S, Liang S, Li Z, Li B, Xia M (2018) Protective effect of leptin-mediated caveolin-1 expression on neurons after spinal cord injury. Cell Calcium 76:122–128. https://doi.org/10.1016/j.ceca.2018.11.003
doi: 10.1016/j.ceca.2018.11.003 pubmed: 30469142
Chen B, Zhang M, Ji M, Zhang D, Chen B, Gong W, Li X, Zhou Y, Dong C, Wen G, Zhan X, Wu X, Yuan H, Xu E, Xia M, Verkhratsky A, Li B (2022) The neuroprotective mechanism of lithium after ischaemic stroke. Commun Biol 5:105. https://doi.org/10.1038/s42003-022-03051-2
doi: 10.1038/s42003-022-03051-2 pubmed: 35115638 pmcid: 8814028
Martinho R, Oliveira A, Correia G, Marques M, Seixas R, Serrão P, Moreira-Rodrigues M (2020) Epinephrine may contribute to the persistence of traumatic memories in a post-traumatic stress disorder animal model. Front Mol Neurosci 13:588802. https://doi.org/10.3389/fnmol.2020.588802
doi: 10.3389/fnmol.2020.588802 pubmed: 33192300 pmcid: 7649334
Fu H, Li B, Hertz L, Peng L (2012) Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int 61:187–194. https://doi.org/10.1016/j.neuint.2012.04.010
doi: 10.1016/j.neuint.2012.04.010 pubmed: 22564531
Li B, Dong L, Wang B, Cai L, Jiang N, Peng L (2012) Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 37:2480–2495. https://doi.org/10.1007/s11064-012-0814-1
doi: 10.1007/s11064-012-0814-1 pubmed: 22711334
Zhao X, Li Z, Liang S, Li S, Ren J, Li B, Zhu Y, Xia M (2019) Different epidermal growth factor receptor signaling pathways in neurons and astrocytes activated by extracellular matrix after spinal cord injury. Neurochem Int 129:104500. https://doi.org/10.1016/j.neuint.2019.104500
doi: 10.1016/j.neuint.2019.104500 pubmed: 31295509
Macedo GC, Morita GM, Domingues LP, Favoretto CA, Suchecki D, Quadros IMH (2018) Consequences of continuous social defeat stress on anxiety- and depressive-like behaviors and ethanol reward in mice. Horm Behav 97:154–161. https://doi.org/10.1016/j.yhbeh.2017.10.007
doi: 10.1016/j.yhbeh.2017.10.007 pubmed: 29056427
Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N, Magnes C, Fröhlich E, Kashofer K, Gorkiewicz G, Holzer P (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155. https://doi.org/10.1016/j.bbi.2016.02.020
doi: 10.1016/j.bbi.2016.02.020 pubmed: 26923630 pmcid: 5014122
Mysliwiec V, Brock MS, Creamer JL, O’Reilly BM, Germain A, Roth BJ (2018) Trauma associated sleep disorder: a parasomnia induced by trauma. Sleep Med Rev 37:94–104. https://doi.org/10.1016/j.smrv.2017.01.004
doi: 10.1016/j.smrv.2017.01.004 pubmed: 28363448
Davis JL, Byrd P, Rhudy JL, Wright DC (2007) Characteristics of chronic nightmares in a trauma-exposed treatment-seeking sample. Dreaming 17:187–198
doi: 10.1037/1053-0797.17.4.187
Miller KE, Brownlow JA, Gehrman PR (2020) Sleep in PTSD: treatment approaches and outcomes. Curr Opin Psychol 34:12–17. https://doi.org/10.1016/j.copsyc.2019.08.017
doi: 10.1016/j.copsyc.2019.08.017 pubmed: 31541965
Xia M, Li X, Yang L, Ren J, Sun G, Qi S, Verkhratsky A, Li B (2017) The ameliorative effect of fluoxetine on neuroinflammation induced by sleep deprivation. J Neurochem 146:63–75. https://doi.org/10.1111/jnc.14272
doi: 10.1111/jnc.14272
Yue N, Huang H, Zhu X, Han Q, Wang Y, Li B, Liu Q, Wu G, Zhang Y, Yu J (2017) Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflamm 14:102. https://doi.org/10.1186/s12974-017-0865-y
doi: 10.1186/s12974-017-0865-y
Ebenezer PJ, Wilson CB, Wilson LD, Nair AR (2016) The anti-inflammatory effects of blueberries in an animal model of post-traumatic stress disorder (PTSD). PLoS ONE 11(9):e0160923. https://doi.org/10.1371/journal.pone.0160923
doi: 10.1371/journal.pone.0160923 pubmed: 27603014 pmcid: 5014311
Flaquer A, Baumbach C, Ladwig KH, Kriebel J, Waldenberger M, Grallert H, Baumert J, Meitinger T, Kruse J, Peters A, Emeny R, Strauch K (2015) Mitochondrial genetic variants identified to be associated with posttraumatic stress disorder. Transl Psychiatry 5(3):e524. https://doi.org/10.1038/tp.2015.18
doi: 10.1038/tp.2015.18 pubmed: 25756807 pmcid: 4354348

Auteurs

Ming Ji (M)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.

Wenliang Gong (W)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.

Siman Wang (S)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.

Dianjun Zhang (D)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.

Binjie Chen (B)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.

Xinyu Li (X)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.

Xiafang Wu (X)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.

Lulu Cui (L)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.

Yuliang Feng (Y)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.

Alexei Verkhratsky (A)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China. Alexej.Verkhratsky@manchester.ac.uk.
Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. Alexej.Verkhratsky@manchester.ac.uk.
Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain. Alexej.Verkhratsky@manchester.ac.uk.
Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania. Alexej.Verkhratsky@manchester.ac.uk.

Baoman Li (B)

Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China. bmli@cmu.edu.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH