A novel fully human recombinant antibody neutralizing α-hemolysin of Staphylococcus aureus.
Staphylococcus aureus
phage display
scFv-Fc
α-Hemolysin
Journal
APMIS : acta pathologica, microbiologica, et immunologica Scandinavica
ISSN: 1600-0463
Titre abrégé: APMIS
Pays: Denmark
ID NLM: 8803400
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
09
06
2022
accepted:
23
06
2022
pubmed:
26
6
2022
medline:
6
8
2022
entrez:
25
6
2022
Statut:
ppublish
Résumé
Methicillin-resistant Staphylococcus aureus (MRSA) is resistant to almost all β-lactam antibiotics. Hence, new ways to control MRSA infection, such as antibacterial antibodies, need to be explored. α-hemolysin is the most important virulence factor widely expressed in S. aureus. This study aimed to develop a new fully human antibody against α-hemolysin of S. aureus and research its neutralizing effect. The single-chain antibody fragments (scFvs) against S. aureus were screened from a fully human scFv library using phage display technology. The selected scFvs had good binding affinities to α-hemolysin and S. aureus. The IgG-like scFv-Fc inserted into the pcDNA3.1 or pMH3 vector was expressed in HEK293F suspension cells to extend the half-life and restore Fc function. The size of purified scFv-Fc was about 55 kDa. The functions of expressed scFv-Fcs against α-hemolysin were validated. The cytotoxicity assays showed that scFv555-Fc had better protective effects on A549 cells than other scFv-Fcs. The results of anti-rabbit erythrocyte lysis and A549 cell apoptosis assay confirmed that scFv555-Fc had a significant neutralizing effect on α-hemolysin. The scFv555-Fc was used to construct the docking model of antigen-antibody complexes using Discovery Studio software. It predicted that the key binding sites of α-hemolysin were TYR28, LYS37, PHE39, ARG56, and LYS58, which might be the key toxic sites of α-hemolysin. A novel fully human scFv-Fc antibody neutralizing the α-hemolysin toxin of S. aureus was successfully developed. The findings might provide a new theoretical basis and treatment method for preventing MRSA infection.
Substances chimiques
Antibodies, Neutralizing
0
Hemolysin Proteins
0
Single-Chain Antibodies
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
578-589Subventions
Organisme : The joint project of the Luzhou Municipal Government and Southwest Medical University
ID : 2017LZXNYD-J26
Organisme : The open Program of Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
ID : HYX21005
Organisme : The project of Science and Technology Department of Sichuan Province
ID : 2022NSFSC0699
Organisme : The joint project of Sichuan University and Luzhou Municipal Government
ID : 2020CDLZ-24
Informations de copyright
© 2022 APMIS. Published by John Wiley & Sons Ltd.
Références
Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520-32.
Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;31(4):18033.
Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36(1):53-9.
Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23(1):99-139.
Cheung GY, Otto M. The potential use of toxin antibodies as a strategy for controlling acute Staphylococcus aureus infections. Expert Opin Ther Targets. 2012;16(6):601-12.
Chow SK, Casadevall A. Monoclonal antibodies and toxins-a perspective on function and isotype. Toxins. 2012;4(6):430-54.
Kummerfeldt C. Raxibacumab: potential role in the treatment of inhalational anthrax. Infect Drug Resist. 2014;7:101-9.
El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother. 2009;64(2):229-38.
Wiener-Kronish JP, Pittet JF. Therapies against virulence products of Staphylococcus aureus and Pseudomonas aeruginosa. Semin Respir Crit Care Med. 2011;32(2):228-35.
Yu X, Robbie G, Wu Y, Esser M, Jensen K, Schwartz H, et al. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus alpha-toxin human monoclonal antibody. Healthy Adults Clin Trial. 2016;61(1):e01020-16.
Rodgers KR, Chou RC. Therapeutic monoclonal antibodies and derivatives: historical perspectives and future directions. Biotechnol Adv. 2016;34(6):1149-58.
Montgomery CP, Boyle-Vavra S, Adem PV, Lee JC, Husain AN, Clasen J, et al. Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis. 2008;198(4):561-70.
Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: the interface of pathogen and host complexity. Semin Cell Dev Biol. 2017;72:101-16.
Tkaczyk C, Hamilton MM, Datta V, Yang XP, Hilliard JJ, Stephens GL, et al. Staphylococcus aureus alpha toxin suppresses effective innate and adaptive immune responses in a murine dermonecrosis model. PLoS One. 2013;8(10):e75103.
Diep BA, Hilliard JJ, Le VT, Tkaczyk C, Le HN, Tran VG, et al. Targeting alpha toxin to mitigate its lethal toxicity in ferret and rabbit models of Staphylococcus aureus necrotizing pneumonia. Antimicrob Agents Chemother. 2017;61(4):e02456-16.
Hilliard JJ, Datta V, Tkaczyk C, Hamilton M, Sadowska A, Jones-Nelson O, et al. Anti-alpha-toxin monoclonal antibody and antibiotic combination therapy improves disease outcome and accelerates healing in a Staphylococcus aureus dermonecrosis model. Antimicrob Agents Chemother. 2015;59(1):299-309.
Wenzel EV, Roth KDR, Russo G, Fuhner V, Helmsing S, Frenzel A, et al. Antibody phage display: antibody selection in solution using biotinylated antigens. Methods Mol Biol. 2020;2070:143-55.
Nian S, Wu T, Ye Y, Wang X, Xu W, Yuan Q. Development and identification of fully human scFv-fcs against Staphylococcus aureus. BMC Immunol. 2016;17:8.
Raag R, Whitlow M. Single-chain Fvs. FASEB J. 1995;9(1):73-80.
Jafari R, Zolbanin NM, Rafatpanah H, Majidi J, Kazemi T. Fc-fusion proteins in therapy: an updated view. Curr Med Chem. 2017;24(12):1228-37.
Sondermann P, Szymkowski DE. Harnessing fc receptor biology in the design of therapeutic antibodies. Curr Opin Immunol. 2016;40:78-87.
Wan L, Zhu S, Zhu J, Yang H, Li S, Li Y, et al. Production and characterization of a CD25-specific scFv-fc antibody secreted from Pichia pastoris. Appl Microbiol Biotechnol. 2013;97(9):3855-63.
Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs. 2016;8(7):1177-94.
Hwang WY, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3-10.
Tkaczyk C, Hua L, Varkey R, Shi Y, Dettinger L, Woods R, et al. Identification of anti-alpha toxin monoclonal antibodies that reduce the severity of Staphylococcus aureus dermonecrosis and exhibit a correlation between affinity and potency. Clin Vaccine Immunol. 2012;19(3):377-85.
Wilke GA, Bubeck Wardenburg J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci USA. 2010;107(30):13473-8.
Foletti D, Strop P, Shaughnessy L, Hasa-Moreno A, Casas MG, Russell M, et al. Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus alpha-hemolysin. J Mol Biol. 2013;425(10):1641-54.
Oganesyan V, Peng L, Damschroder MM, Cheng L, Sadowska A, Tkaczyk C, et al. Mechanisms of neutralization of a human anti-alpha-toxin antibody. J Biol Chem. 2014;289(43):29874-80.
Niu X, Qiu j, Wang X, Gao X, Dong J, Wang. J, et al. Molecular insight into the inhibition mechanism of cyrtominitin to α-hemolysin by molecular dynamics simulation. Eur J Med Chem. 2013;62:320-8.