Downregulation of CDC42 inhibits the proliferation and stemness of human trophoblast stem cell via EZRIN/YAP inactivation.


Journal

Cell and tissue research
ISSN: 1432-0878
Titre abrégé: Cell Tissue Res
Pays: Germany
ID NLM: 0417625

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 20 10 2021
accepted: 09 06 2022
pubmed: 26 6 2022
medline: 8 9 2022
entrez: 25 6 2022
Statut: ppublish

Résumé

Placental dysplasia increases the risk of recurrent spontaneous abortion (RSA). However, the underlying mechanism regulating placental development remains unclear. In this study, we showed that the expression of CDC42 was decreased in the villous tissue of RSA samples compared to healthy controls. Further examination demonstrated that CDC42 deficiency led to the differentiation of human trophoblast stem cells (hTSCs) and inhibited their proliferation. Genetic manipulation of YAP and EZRIN in hTSCs revealed that CDC42 regulates the stemness and proliferation of hTSCs; this is dependent on EZRIN, which translocates YAP into the nucleus. Moreover, the expression pattern of EZRIN, YAP, and Ki67 was also abnormal in the villous tissue of RSA samples, consistent with in vitro experiments. In summary, these findings suggest that the CDC42/EZRIN/YAP pathway plays an important role in placental development.

Identifiants

pubmed: 35751703
doi: 10.1007/s00441-022-03653-6
pii: 10.1007/s00441-022-03653-6
doi:

Substances chimiques

Cytoskeletal Proteins 0
YAP-Signaling Proteins 0
YAP1 protein, human 0
ezrin 0
CDC42 protein, human EC 3.6.5.2
cdc42 GTP-Binding Protein EC 3.6.5.2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

573-585

Subventions

Organisme : National Natural Science Foundation of China
ID : 81830045
Organisme : National Natural Science Foundation of China
ID : 82071652
Organisme : National Natural Science Foundation of China
ID : 31971071
Organisme : National Key R&D Program of China
ID : 2017YFC1001402
Organisme : National Key R&D Program of China
ID : 2018YFC1004102
Organisme : Science and Technology Projects in Guangzhou
ID : 202102010005
Organisme : Guangzhou Municipal Health Commission
ID : 2019GX03
Organisme : General Program of Guangdong Province Natural Science Foundation
ID : 2021A1515011039
Organisme : General Program of Guangdong Province Natural Science Foundation
ID : 2020A1515010273
Organisme : National Natural Science Foundation of China
ID : 81801446

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Bergert M, Lembo S, Sharma S, Russo L, Milovanovic D, Gretarsson KH et al (2020) Cell surface mechanics gate embryonic stem cell differentiation. Cell Stem Cell. https://doi.org/10.1016/j.stem.2020.10.017
doi: 10.1016/j.stem.2020.10.017 pubmed: 33207217
Bi S, Tang J, Zhang L, Huang L, Chen J, Wang Z et al (2020) Fine particulate matter reduces the pluripotency and proliferation of human embryonic stem cells through ROS induced AKT and ERK signaling pathway. Reprod Toxicol 96:231–240. https://doi.org/10.1016/j.reprotox.2020.07.010
doi: 10.1016/j.reprotox.2020.07.010 pubmed: 32745510
Bretou M, Jouannot O, Fanget I, Pierobon P, Larochette N, Gestraud P et al (2014) Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension. Mol Biol Cell 25(20):3195–3209. https://doi.org/10.1091/mbc.E14-07-1229
doi: 10.1091/mbc.E14-07-1229 pubmed: 25143404 pmcid: 4196869
Cau J, Hall A (2005) Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J Cell Sci 118(Pt 12):2579–2587. https://doi.org/10.1242/jcs.02385
doi: 10.1242/jcs.02385 pubmed: 15928049
Chen F, Ma L, Parrini MC, Mao X, Lopez M, Wu C et al (2000) Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability. Curr Biol 10(13):758–765. https://doi.org/10.1016/s0960-9822(00)00571-6
doi: 10.1016/s0960-9822(00)00571-6 pubmed: 10898977
De Belly H, Stubb A, Yanagida A, Labouesse C, Jones PH, Paluch EK et al (2020) Membrane tension gates ERK-mediated regulation of pluripotent cell fate. Cell Stem Cell. https://doi.org/10.1016/j.stem.2020.10.018
doi: 10.1016/j.stem.2020.10.018 pubmed: 33217323
Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183. https://doi.org/10.1038/nature10137
doi: 10.1038/nature10137 pubmed: 21654799
Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635. https://doi.org/10.1038/nature01148
doi: 10.1038/nature01148 pubmed: 12478284
Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M et al (2012a) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. 10(5):520–530
Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M et al (2012b) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10(5):520–530. https://doi.org/10.1016/j.stem.2012.04.007
doi: 10.1016/j.stem.2012.04.007 pubmed: 22560076 pmcid: 3348626
Fuchs S, Herzog D, Sumara G, Büchmann-Møller S, Civenni G, Wu X et al (2009) Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1. 4(3):236–247
Griebel CP, Halvorsen J, Golemon TB, Day AA (2005) Management of spontaneous abortion. 72(7):1243–1250
Hu JK, Du W, Shelton SJ, Oldham MC, DiPersio CM, Klein OD (2017) An FAK-YAP-mTOR signaling axis regulates stem cell-based tissue renewal in mice. Cell Stem Cell 21(1):91-106.e106. https://doi.org/10.1016/j.stem.2017.03.023
doi: 10.1016/j.stem.2017.03.023 pubmed: 28457749 pmcid: 5501749
Huang Z, Zhang L, Chen Y, Zhang H, Zhang Q, Li R et al (2016) Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway. Cell Death Dis 7:e2142. https://doi.org/10.1038/cddis.2016.51
doi: 10.1038/cddis.2016.51 pubmed: 26986510 pmcid: 4823952
Hubert MA, Sherritt SL, Bachurski CJ, Handwerger S (2010) Involvement of transcription factor NR2F2 in human trophoblast differentiation. PLoS One 5(2):e9417. https://doi.org/10.1371/journal.pone.0009417
doi: 10.1371/journal.pone.0009417 pubmed: 20195529 pmcid: 2828470
Jansson T, Castillo-Castrejon M, Gupta MB, Powell TL, Rosario FJJCS (2020) Down-regulation of placental Cdc42 and Rac1 links mTORC2 inhibition to decreased trophoblast amino acid transport in human intrauterine growth restriction. 134(1):53–70
Liang C-Y, Wang L-J, Chen C-P, Chen L-F, Chen Y-H, Chen H (2010) GCM1 regulation of the expression of syncytin 2 and its cognate receptor MFSD2A in human placenta. 83(3):387–395
Liu S, Li Q, Na Q, Liu CJP (2012) Endothelin-1 stimulates human trophoblast cell migration through Cdc42 activation. 33(9):712–716
Liu Z, Wu H, Jiang K, Wang Y, Zhang W, Chu Q et al (2016) MAPK-mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep 16(7):1810–1819. https://doi.org/10.1016/j.celrep.2016.07.020
doi: 10.1016/j.celrep.2016.07.020 pubmed: 27498861
Loregger T, Pollheimer J, Knöfler M (2003) Regulatory transcription factors controlling function and differentiation of human trophoblast--a review. Placenta 24 Suppl A:S104-110. https://doi.org/10.1053/plac.2002.0929
Maldonado MDM, Dharmawardhane S (2018) Targeting Rac and Cdc42 GTPases in cancer. Cancer Res 78(12):3101–3111. https://doi.org/10.1158/0008-5472.Can-18-0619
doi: 10.1158/0008-5472.Can-18-0619 pubmed: 29858187
Meinhardt G, Haider S, Kunihs V, Saleh L, Pollheimer J, Fiala C et al (2020) Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proc Natl Acad Sci U S A 117(24):13562–13570. https://doi.org/10.1073/pnas.2002630117
doi: 10.1073/pnas.2002630117 pubmed: 32482863 pmcid: 7306800
Meinhardt G, Husslein P, Knöfler M (2005) Tissue-specific and ubiquitous basic helix-loop-helix transcription factors in human placental trophoblasts. Placenta 26(7):527–539. https://doi.org/10.1016/j.placenta.2004.09.005
doi: 10.1016/j.placenta.2004.09.005 pubmed: 15993702
Moya IM, Halder G (2019) Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 20(4):211–226. https://doi.org/10.1038/s41580-018-0086-y
doi: 10.1038/s41580-018-0086-y pubmed: 30546055
Nambiar R, McConnell RE, Tyska MJ (2009) Control of cell membrane tension by myosin-I. Proc Natl Acad Sci U S A 106(29):11972–11977. https://doi.org/10.1073/pnas.0901641106
doi: 10.1073/pnas.0901641106 pubmed: 19574460 pmcid: 2715533
Nicola C, Lala PK, Chakraborty CJ (2008) Prostaglandin E2-mediated migration of human trophoblast requires RAC1 and CDC42. 78(6):976–982
Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K et al (2018) Derivation of human trophoblast stem cells. 22(1):50–63. e56
Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C et al (2018) Placentation defects are highly prevalent in embryonic lethal mouse mutants. 555(7697):463–468
Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94(4):1287–1312. https://doi.org/10.1152/physrev.00005.2014
doi: 10.1152/physrev.00005.2014 pubmed: 25287865
Rai R, Regan L (2006) Recurrent miscarriage. Lancet 368(9535):601–611. https://doi.org/10.1016/s0140-6736(06)69204-0
doi: 10.1016/s0140-6736(06)69204-0 pubmed: 16905025
Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M et al (2004) Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. 114(6):744–754
Saha B, Ganguly A, Home P, Bhattacharya B, Ray S, Ghosh A et al (2020) TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: an implication in early human pregnancy loss. Proc Natl Acad Sci U S A 117(30):17864–17875. https://doi.org/10.1073/pnas.2002449117
doi: 10.1073/pnas.2002449117 pubmed: 32669432 pmcid: 7395512
Sakamori R, Das S, Yu S, Feng S, Stypulkowski E, Guan Y et al (2012) Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice. 122(3):1052–1065
Song Y, Ma X, Zhang M, Wang M, Wang G, Ye Y et al (2020) Ezrin mediates invasion and metastasis in tumorigenesis: a review. Front Cell Dev Biol 8:588801. https://doi.org/10.3389/fcell.2020.588801
doi: 10.3389/fcell.2020.588801 pubmed: 33240887 pmcid: 7683424
Wada K, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138(18):3907–3914. https://doi.org/10.1242/dev.070987
doi: 10.1242/dev.070987 pubmed: 21831922
Wang H, Xu P, Luo X, Hu M, Liu Y, Yang Y et al (2020) Phosphorylation of Yes-associated protein impairs trophoblast invasion and migration: implications for the pathogenesis of fetal growth restriction†. Biol Reprod 103(4):866–879. https://doi.org/10.1093/biolre/ioaa112
doi: 10.1093/biolre/ioaa112 pubmed: 32582940
Xin Q, Kong S, Yan J, Qiu J, He B, Zhou C et al (2018) Polycomb subunit BMI1 determines uterine progesterone responsiveness essential for normal embryo implantation. J Clin Invest 128(1):175–189. https://doi.org/10.1172/jci92862
doi: 10.1172/jci92862 pubmed: 29202468
Xue Y, Bhushan B, Mars WM, Bowen W, Tao J, Orr A et al (2020) Phosphorylated Ezrin (Thr567) regulates hippo pathway and yes-associated protein (Yap) in liver. Am J Pathol 190(7):1427–1437. https://doi.org/10.1016/j.ajpath.2020.03.014
doi: 10.1016/j.ajpath.2020.03.014 pubmed: 32289287
Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761. https://doi.org/10.1101/gad.1602907
doi: 10.1101/gad.1602907 pubmed: 17974916 pmcid: 2045129
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6
doi: 10.1038/s41467-019-09234-6 pubmed: 30944313 pmcid: 6447622

Auteurs

Bi Shilei (B)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Zhang Lizi (Z)

Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Huang Lijun (H)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Ma Weixu (M)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Meng Nan (M)

Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Deng Weinan (D)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Li Yulian (L)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Liang Yingyu (L)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Huang Minshan (H)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Xu Pei (X)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Liu Mingxing (L)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Chen Jingsi (C)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Tu Zhaowei (T)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.

Wang Zhijian (W)

Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Wang Haibin (W)

Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Lu Jinhua (L)

Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China. jinhua888@126.com.

Chen Dunjin (C)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China. gzdrchen@gzhmu.edu.cn.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China. gzdrchen@gzhmu.edu.cn.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China. gzdrchen@gzhmu.edu.cn.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China. gzdrchen@gzhmu.edu.cn.

Du Lili (D)

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China. lilidugysy@gzhmu.edu.cn.
Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China. lilidugysy@gzhmu.edu.cn.
Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China. lilidugysy@gzhmu.edu.cn.
Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China. lilidugysy@gzhmu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH