Multiple isoforms of HSP70 and HSP90 required for betanodavirus multiplication in medaka cells.


Journal

Archives of virology
ISSN: 1432-8798
Titre abrégé: Arch Virol
Pays: Austria
ID NLM: 7506870

Informations de publication

Date de publication:
Oct 2022
Historique:
received: 28 02 2022
accepted: 18 05 2022
pubmed: 27 6 2022
medline: 27 8 2022
entrez: 26 6 2022
Statut: ppublish

Résumé

Heat shock proteins (HSPs) are molecular chaperones that have recently been shown to function as host factors (HFs) for virus multiplication in fish as well as in mammals, plants, and insects. HSPs are classified into families, and each family has multiple isoforms. However, no comprehensive studies have been performed to clarify the biological importance of these multiple isoforms for fish virus multiplication. Betanodaviruses are the causative agents of viral nervous necrosis in cultured marine fish and cause very high mortality. Although the viral genome and encoded proteins have been characterized extensively, information on HFs for these viruses is limited. In this study, therefore, we focused on the HSP70 and HSP90 families to examine the importance of their isoforms for betanodavirus multiplication. We found that HSP inhibitors (17-AAG, radicicol, and quercetin) suppressed viral RNA replication and production of progeny virus in infected medaka (Oryzias latipes) cells. Thermal stress or virus infection resulted in increased expression of some isoform genes and facilitated virus multiplication. Furthermore, overexpression and knockdown of some isoform genes revealed that the isoforms HSP70-1, HSP70-2, HSP70-5, HSP90-α1, HSP90-α2, and HSP90-β play positive roles in virus multiplication in medaka. Collectively, these results suggest that multiple isoforms of fish HPSs serve as HFs for betanodavirus multiplication.

Identifiants

pubmed: 35752988
doi: 10.1007/s00705-022-05489-5
pii: 10.1007/s00705-022-05489-5
doi:

Substances chimiques

HSP70 Heat-Shock Proteins 0
HSP90 Heat-Shock Proteins 0
Heat-Shock Proteins 0
Molecular Chaperones 0
Protein Isoforms 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1961-1975

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Jahanafrooz Z, Chen Z, Bao J, Li H, Lipworth L, Guo X (2022) An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene 808:145963
pubmed: 34530086 doi: 10.1016/j.gene.2021.145963
Shukla E, Chauhan R (2019) Host-HIV-1 Interactome: A quest for novel therapeutic intervention. Cells 8:1155
pmcid: 6830350 doi: 10.3390/cells8101155
Söderholm S, Fu Y, Gaelings L, Belanov S, Yetukuri L, Berlinkov M, Cheltsov AV, Anders S, Aittokallio T, Nyman TA, Matikainen S, Kainov DE (2016) Multi-omics studies towards novel modulators of influenza A virus-host interaction. Viruses 8:269
pmcid: 5086605 doi: 10.3390/v8100269
Huang R, Zhu G, Zhang J, Lai Y, Xu Y, He J, Xie J (2017) Betanodavirus-like particles enter host cells via clathrin-mediated endocytosis in a cholesterol-, pH- and cytoskeleton-dependent manner. Vet Res 48:8
pubmed: 28179028 pmcid: 5299686 doi: 10.1186/s13567-017-0412-y
Liu X, Qin Z, Babu VS, Zhao L, Li J, Zhang X, Lin L (2019) Transcriptomic profiles of striped snakehead cells (SSN-1) infected with snakehead vesiculovirus (SHVV) identifying IFI35 as a positive factor for SHVV replication. Fish Shellfish Immunol 86:46–52
pubmed: 30447429 doi: 10.1016/j.fsi.2018.11.031
Lu LF, Zhang C, Li ZC, Zhou XY, Jiang JY, Chen DD, Zhang YA, Xiong F, Zhou F, Li S (2021) A novel role of Zebrafish TMEM33 in negative regulation of interferon production by two distinct mechanisms. PloS Pathog 17:e1009317
pubmed: 33600488 pmcid: 7891750 doi: 10.1371/journal.ppat.1009317
Rao Y, Ji J, Liao Z, Su H, Su J (2019) GCRV hijacks TBK1 to evade IRF7-mediated antiviral immune responses in grass carp Ctenopharyngodon idella. Fish Shellfish Immunol 93:492–499
pubmed: 31381973 doi: 10.1016/j.fsi.2019.08.005
Sun M, Wu S, Zhang X, Zhang L, Kang S, Qin Q, Wei J (2021) Grouper TRAF5 exerts negative regulation on antiviral immune response against iridovirus. Fish Shellfish Immunol 115:7–13
pubmed: 34062236 doi: 10.1016/j.fsi.2021.05.023
Xu TJ, Chu Q, Cui JX (2018) Rhabdovirus-inducible microRNA-210 modulates antiviral innate immune response via targeting STING/MITA in fish. J Immunol 201:982–994
pubmed: 29967101 doi: 10.4049/jimmunol.1800377
Yu Y, Li C, Wang Y, Wang Q, Wang S, Wei S, Yang M, Qin Q (2019) Molecular cloning and characterization of grouper Krϋppel-like factor 9 gene: involvement in the fish immune response to viral infection. Fish Shellfish Immunol 89:677–686
pubmed: 30905839 doi: 10.1016/j.fsi.2019.03.041
Chen B, Huo S, Liu W, Wang F, Lu Y, Xu Z, Liu X (2019) Fish-specific finTRIM FTR36 triggers IFN pathway and mediates inhibition of viral replication. Fish Shellfish Immunol 84:876–884
pubmed: 30366094 doi: 10.1016/j.fsi.2018.10.051
Huang Y, Yu Y, Yang Y, Yang M, Zhou L, Huang X, Qin Q (2016) Antiviral function of grouper MDA5 against iridovirus and nodavirus. Fish Shellfish Immunol 54:188–196
pubmed: 27050314 doi: 10.1016/j.fsi.2016.04.001
Kim MS, Shin MJ, Kim KH (2018) Increase of viral hemorrhagic septicemia virus growth by knockout of IRF9 gene in Epithelioma papulosum cyprini cells. Fish Shellfish Immunol 83:443–448
pubmed: 30244086 doi: 10.1016/j.fsi.2018.09.025
Wei M, Zhang Y, Aweya JJ, Wang F, Li S, Lun J, Zhu C, Yao D (2019) Litopenaeus vannamei Src64B restricts white spot syndrome virus replication by modulating apoptosis. Fish Shellfish Immunol 93:313–321
pubmed: 31351111 doi: 10.1016/j.fsi.2019.07.062
Zhang Y, Huang L, Gao X, Qin Q, Huang X, Huang Y (2022) Grouper USP12 exerts antiviral activity against nodavirus infection. Fish Shellfish Immunol 121:332–341
pubmed: 35032679 doi: 10.1016/j.fsi.2022.01.011
Chen HJ, Li PH, Yang Y, Xin XH, Ou Y, Wei JG, Huang YH, Huang XH, Qin QW, Sun HY (2021) Characterization and function analysis of Epinephelus coioides Hsp40 response to Vibrio alginolyticus and SGIV infection. Fish Shellfish Immunol 118:396–404
pubmed: 34571156 doi: 10.1016/j.fsi.2021.09.030
Li W, Yu F, Wang H, Hong X, Lu L (2020) Induction of pro-viral grass carp Ctenopharyngodon idella Hsp70 instead of Hsc70 during infection of grass carp reovirus. Fish Shellfish Immunol 98:1024–1029
pubmed: 31751661 doi: 10.1016/j.fsi.2019.11.042
Li PH, Cai YJ, Zhu XL, Yang JDH, Yang SQ, Huang W, Wei SN, Zhou S, Wei JG, Qin QW, Sun HY (2022) Epinephelus coioides Hsp27 negatively regulates innate immune response and apoptosis induced by Singapore grouper iridovirus (SGIV) infection. Fish Shellfish Immunol 120:470–480
pubmed: 34933091 doi: 10.1016/j.fsi.2021.12.016
Yu F, Wang L, Li W, Wang H, Que S, Lu L (2020) Aquareovirus NS31 protein serves as a specific inducer for host heat shock 70-kDa protein. J Gen Virol 101:144–155
doi: 10.1099/jgv.0.001363
Zhang Y, Zhang YA, Tu J (2021) Hsp90 is required for snakehead vesiculovirus replication via stabilization of the viral L protein. J Virol 95:e0059421
pubmed: 34037421 doi: 10.1128/JVI.00594-21
Le Y, Jia P, Jin Y, Liu W, Jia K, Yi M (2017) The antiviral role of heat shock protein 27 against red spotted grouper nervous necrosis virus infection in sea perch. Fish Shellfish Immunol 70:185–194
pubmed: 28860076 doi: 10.1016/j.fsi.2017.08.032
Li C, Shi L, Gao Y, Lu Y, Ye J, Liu X (2021) HSC70 inhibits spring viremia of carp virus replication by inducing MARCH8-mediated lysosomal degradation of G protein. Front Immunol 12:724403
pubmed: 34659210 pmcid: 8511485 doi: 10.3389/fimmu.2021.724403
Lubkowska A, Pluta W, Strońska A, Lalko A (2021) Role of heat shock proteins (HSP70 and HSP90) in viral infection. Int J Mol Sci 22:9366
pubmed: 34502274 pmcid: 8430838 doi: 10.3390/ijms22179366
Nagy PD, Wang RY, Pogany J, Hafren A, Makinen K (2011) Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 411:374–382
pubmed: 21295323 doi: 10.1016/j.virol.2010.12.061
Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858
pubmed: 11884745 doi: 10.1126/science.1068408
Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111
pubmed: 18663603 doi: 10.1007/s12192-008-0068-7
Pham PH, Sokeechand BSH, Hamilton ME, Misk E, Jones G, Lee LEJ, Lumsden JS, Bols NC (2019) VER-155008 induced Hsp70 proteins expression in fish cell cultures while impeding replication of two RNA viruses. Antiviral Res 162:151–162
pubmed: 30625344 doi: 10.1016/j.antiviral.2019.01.001
Chang JS, Chi SC (2015) GHSC70 is involved in the cellular entry of nervous necrosis virus. J Virol 89:61–70
pubmed: 25320288 doi: 10.1128/JVI.02523-14
Su YC, Wu JL, Hong JR (2011) Betanodavirus up-regulates chaperone GRP78 via ER stress: roles of GRP78 in viral replication and host mitochondria-mediated cell death. Apoptosis 16:272–287
pubmed: 21170590 doi: 10.1007/s10495-010-0565-x
Xu H, Yan F, Deng X, Wang J, Zou T, Ma X, Zhang X, Qi Y (2009) The interaction of white spot syndrome virus envelope protein VP28 with shrimp Hsc70 is specific and ATP-dependent. Fish Shellfish Immunol 26:414–421
pubmed: 19138748 doi: 10.1016/j.fsi.2009.01.001
Zhang WW, Jia KT, Jia P, Xiang YX, Lu XB, Liu W, Yi M (2020) Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLoS Pathog 16:e1008668
pubmed: 32639977 pmcid: 7371229 doi: 10.1371/journal.ppat.1008668
Bandín I, Souto S (2020) Betanodavirus and VER disease: a 30-year research review. Pathogens 9:106
pmcid: 7168202 doi: 10.3390/pathogens9020106
Chen NC, Yoshimura M, Guan HH, Wang TY, Misumi Y, Lin CC, Chuankhayan P, Nakagawa A, Chan SI, Tsukihara T, Chen TY, Chen CJ (2015) Crystal structures of a piscine betanodavirus: mechanisms of capsid assembly and viral infection. PLoS Pathog 11:e1005203
pubmed: 26491970 pmcid: 4619592 doi: 10.1371/journal.ppat.1005203
Mori K, Nakai T, Muroga K, Arimoto M, Mushiake K, Furusawa I (1992) Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187:368–371
pubmed: 1736540 doi: 10.1016/0042-6822(92)90329-N
Schneemann A, Ball AL, Delsert C, Johnson JE, Nishizawa T (2005) Family Nodaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Academic Press, San Diego, pp 865–872
Fenner BJ, Thiagarajan R, Chua HK, Kwang J (2006) Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J Virol 80:85–94
pubmed: 16352533 pmcid: 1317529 doi: 10.1128/JVI.80.1.85-94.2006
Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori K, Arimoto M, Okuno T, Nakai T (2005) Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 86:2807–2816
pubmed: 16186236 doi: 10.1099/vir.0.80902-0
Chen LJ, Su YC, Hong JR (2009) Betanodavirus non-structural protein B1: a novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385:444–454
pubmed: 19136133 doi: 10.1016/j.virol.2008.11.048
Nishizawa T, Furuhashi M, Nagai T, Nakai T, Muroga K (1997) Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol 63:1633–1636
pubmed: 9097459 pmcid: 168456 doi: 10.1128/aem.63.4.1633-1636.1997
Okinaka Y, Nakai T (2008) Comparisons among the complete genomes of four betanodavirus genotypes. Dis Aquat Org 80:113–121
doi: 10.3354/dao01914
Hata N, Okinaka Y, Iwamoto T, Kawato Y, Mori K, Nakai T (2010) Identification of RNA regions that determine temperature sensitivity in betanodaviruses. Arch Virol 155:1597–1606
pubmed: 20582605 doi: 10.1007/s00705-010-0736-7
Ito Y, Okinaka Y, Mori K, Sugaya T, Nishioka T, Oka M, Nakai T (2008) The variable region of RNA2 is sufficient to determine host specificity in betanodaviruses. Dis Aquat Org 79:199–205
doi: 10.3354/dao01906
Iwamoto T, Okinaka Y, Mise K, Mori K, Arimoto M, Okuno T, Nakai T (2004) Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol 78:1256–1262
pubmed: 14722280 pmcid: 321384 doi: 10.1128/JVI.78.3.1256-1262.2004
Souto S, Mérour E, Biacchesi S, Brémont M, Olveira JG, Bandín I (2015) In vitro and in vivo characterization of molecular determinants of virulence in reassortant betanodavirus. J Gen Virol 96:1287–1296
pubmed: 25626678 doi: 10.1099/vir.0.000064
Souto S, Olveira JG, Dopazo CP, Borrego JJ, Bandín I (2018) Modification of betanodavirus virulence by substitutions in the 3′ terminal region of RNA2. J Gen Virol 99:1210–1220
pubmed: 30041710 pmcid: 6230769 doi: 10.1099/jgv.0.001112
Iwamoto T, Mise K, Mori K, Arimoto M, Nakai T, Okuno T (2001) Establishment of an infectious RNA transcription system for Striped jack nervous necrosis virus, the type species of the betanodaviruses. J Gen Virol 82:2653–2662
pubmed: 11602777 doi: 10.1099/0022-1317-82-11-2653
Adachi K, Sumiyoshi K, Ariyasu R, Yamashita K, Zenke K, Okinaka Y (2010) Susceptibilities of medaka (Oryzias latipes) cell lines to a betanodavirus. Virol J 7:150
pubmed: 20624282 pmcid: 2908575 doi: 10.1186/1743-422X-7-150
Furusawa R, Okinaka Y, Nakai T (2006) Betanodavirus infection in the freshwater model fish medaka (Oryzias latipes). J Gen Virol 87:2333–2339
pubmed: 16847129 doi: 10.1099/vir.0.81761-0
Ishikawa Y (2000) Medaka fish as a model system for vertebrate developmental genetics. BioEssays 22:487–495
pubmed: 10797489 doi: 10.1002/(SICI)1521-1878(200005)22:5<487::AID-BIES11>3.0.CO;2-8
Sasado T, Tanaka M, Kobayashi K, Sato T, Sakaizumi M, Naruse K (2010) The National BioResource Project Medaka (NBRP Medaka): an integrated bioresource for biological and biomedical sciences. Exp Anim 59:13–23
pubmed: 20224166 doi: 10.1538/expanim.59.13
Wittbrodt J, Shima A, Schartl M (2002) Medaka–a model organism from the far East. Nat Rev Genet 3:53–64
pubmed: 11823791 doi: 10.1038/nrg704
Matsumoto Y, Oota H, Asaoka Y, Nishina H, Watanabe K, Bujnicki JM, Oda S, Kawamura S, Mitani H (2009) Medaka: a promising model animal for comparative population genomics. BMC Res Notes 2:88
pubmed: 19426554 pmcid: 2683866 doi: 10.1186/1756-0500-2-88
Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719
pubmed: 17554307 doi: 10.1038/nature05846
Grabher C, Wittbrodt J (2007) Meganuclease and transposon mediated transgenesis in medaka. Genome Biol 8:S10
pubmed: 18047687 pmcid: 2106848 doi: 10.1186/gb-2007-8-s1-s10
Mitani H, Kamei Y, Fukamachi S, Od S, Sasaki T, Asakawa S, Todo T, Shimizu N (2006) The medaka genome: why we need multiple fish models in vertebrate functional genomics. Genome Dyn 2:165–182
pubmed: 18753778 doi: 10.1159/000095103
Taniguchi Y, Takeda S, Furutani-Seiki M, Kamei Y, Todo T, Sasado T, Deguchi T, Kondoh H, Mudde J, Yamazoe M, Hidaka M, Mitani H, Toyoda A, Sakaki Y, Plasterk RH, Cuppen E (2006) Generation of medaka gene knockout models by target-selected mutagenesis. Genome Biol 7:R116
pubmed: 17156454 pmcid: 1794429 doi: 10.1186/gb-2006-7-12-r116
Hirayama M, Mitani H, Watabe S (2006) Temperature-dependent growth rates and gene expression patterns of various medaka Oryzias latipes cell lines derived from different populations. J Comp Physiol 176:311–320
doi: 10.1007/s00360-005-0053-8
Iwamoto T, Nakai T, Mori K, Arimoto M, Furusawa I (2000) Cloning of the fish cell line SSN-1 for piscine nodaviruses. Dis Aquat Org 43:81–89
doi: 10.3354/dao043081
Iwamoto T, Mori K, Arimoto M, Nakai T (1999) High permissivity of the fish cell line SSN-1 for piscine nodaviruses. Dis Aquat Org 39:37–47
doi: 10.3354/dao039037
Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–497
Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28
pubmed: 9222585 pmcid: 313013 doi: 10.1379/1466-1268(1996)001<0023:AHSGTT>2.3.CO;2
Arhel N, Kirchhoff F (2010) Host proteins involved in HIV infection: new therapeutic targets. Biochim Biophys Acta 1802:313–321
pubmed: 20018238 doi: 10.1016/j.bbadis.2009.12.003
Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159
pubmed: 2440339 doi: 10.1016/0003-2697(87)90021-2
Kampmueller KM, Miller DJ (2005) The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells. J Virol 79:6827–6837
pubmed: 15890922 pmcid: 1112161 doi: 10.1128/JVI.79.11.6827-6837.2005
Sung YY, MacRae TH (2011) Heat shock proteins and disease control in aquatic organisms. J Aquac Res Dev S 2:006
Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY (2010) Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis 33:789–801
pubmed: 20678104 doi: 10.1111/j.1365-2761.2010.01183.x
Ackerman A, Iwama GK (2001) Physiological and cellular response of juvenile rainbow trout to vibriosis. J Aquat Anim Health 13:173–180
doi: 10.1577/1548-8667(2001)013<0173:PACSRO>2.0.CO;2
Cheng J, Li H, Huang Z, Zhang F, Bao L, Li Y, Chen L, Xue L, Chu W, Zhang J (2019) Expression analysis of the heat shock protein genes and cellular reaction in dojo loach (Misgurnus anguillicaudatus) under the different pathogenic invasion. Fish Shellfish Immunol 95:506–513
pubmed: 31683001 doi: 10.1016/j.fsi.2019.10.073
Deane EE, Li J, Woo NYS (2004) Modulated heat shock protein expression during pathogenic Vibrio alginolyticus stress of sea bream. Dis Aquat Org 62:205–215
doi: 10.3354/dao062205
Forsyth RB, Candido PM, Babich SL, Iwama GK (1997) Stress protein expression in coho salmon with bacterial kidney disease. J Aquat Anim Health 9:18–25
doi: 10.1577/1548-8667(1997)009<0018:SPEICS>2.3.CO;2
Yao L, Qu B, Ma Z, Chen Y, Tan Y, Gao Z, Zhang S (2019) Lectin-like and bacterial-agglutinating activities of heat shock proteins Hsp5 and Hsp90α from amphioxus Branchiostoma japonicum. Fish Shellfish Immunol 95:688–696
pubmed: 31683002 doi: 10.1016/j.fsi.2019.10.074
Chen YM, Kuo CE, Wang TY, Shie PS, Wang WC, Huang SL, Tsai TJ, Chen PP, Chen JC, Chen TY (2010) Cloning of an orange-spotted grouper Epinephelus coioides heat shock protein 90AB (HSP90AB) and characterization of its expression in response to nodavirus. Fish Shellfish Immunol 28:895–904
pubmed: 20153436 doi: 10.1016/j.fsi.2010.02.004
Hadden MK, Lubbers DJ, Blagg BS (2006) Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 N-terminal ATP binding site. Curr Top Med Chem 6:1173–1182
pubmed: 16842154 doi: 10.2174/156802606777812031
Aalinkeel R, Bindukumar B, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz SA (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate 68:1773–1789
pubmed: 18726985 pmcid: 2826114 doi: 10.1002/pros.20845
Hosokawa N, Hirayoshi K, Kudo H, Takechi H, Aoike A, Kawai K, Nagata K (1992) Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol 12:3490–3498
pubmed: 1321338 pmcid: 364598
Gonzalez O, Fontanes V, Raychaudhuri S, Loo R, Loo J, Arumugaswami V, Sun R, Dasgupta A, French SW (2009) The heat shock protein inhibitor Quercetin attenuates hepatitis C virus production. Hepatology 50:1756–1764
pubmed: 19839005 doi: 10.1002/hep.23232
Hu J, Seeger C (1996) Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci USA 93:1060–1064
pubmed: 8577714 pmcid: 40030 doi: 10.1073/pnas.93.3.1060
Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, Suzuki T, Moriishi K, Matsuura Y (2006) Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 25:5015–5025
pubmed: 17024179 pmcid: 1618089 doi: 10.1038/sj.emboj.7601367
Wu X, Tao P, Nie H (2011) Geldanamycin is effective in the treatment of herpes simplex virus epithelial keratitis in a rabbit model. Clin Experiment Ophthalmol 39:779–783
pubmed: 22050565 doi: 10.1111/j.1442-9071.2011.02558.x
Chase G, Deng T, Fodor E, Leung BW, Mayer D, Schwemmle M, Brownlee G (2008) Hsp90 inhibitors reduce influenza virus replication in cell culture. Virology 377:431–439
pubmed: 18570972 doi: 10.1016/j.virol.2008.04.040
Smith DR, McCarthy S, Chrovian A, Olinger G, Stossel A, Geisbert TW, Hensley LE, Connor JH (2010) Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Res 87:187–194
pubmed: 20452380 pmcid: 2907434 doi: 10.1016/j.antiviral.2010.04.015
Csermely P, Schnaider T, Soti C, Prohaszka Z, Narda G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168
pubmed: 9749880 doi: 10.1016/S0163-7258(98)00013-8
Nascimento R, Costa H, Parkhouse RM (2012) Virus manipulation of cell cycle. Protoplasma 249:519–528
pubmed: 21986922 doi: 10.1007/s00709-011-0327-9
Thaker SK, Ch′ng J, Christofk HR (2019) Viral hijacking of cellular metabolism. BMC Biol 17:59
pubmed: 31319842 pmcid: 6637495 doi: 10.1186/s12915-019-0678-9
Verdonck S, Nemegeer J, Vandenabeele P, Maelfait J (2022) Viral manipulation of host cell necroptosis and pyroptosis. Trends Microbiol (in press)
Wu W, Luo X, Ren M (2022) Clearance or Hijack: Universal interplay mechanisms between viruses and host autophagy from plants to animals. Front Cell Infect Microbiol 11:786348
pubmed: 35047417 pmcid: 8761674 doi: 10.3389/fcimb.2021.786348

Auteurs

Kosuke Zenke (K)

Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan.

Yasushi Okinaka (Y)

Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan. okinaka@hiroshima-u.ac.jp.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH