Antagonistic in vivo interaction of polystyrene nanoplastics and silver compounds. A study using Drosophila.

Antagonistic interaction Carriers Drosophila melanogaster Genotoxicity Nanoplastics Oxidative stress Polystyrene Silver nanoparticles Size Uptake

Journal

The Science of the total environment
ISSN: 1879-1026
Titre abrégé: Sci Total Environ
Pays: Netherlands
ID NLM: 0330500

Informations de publication

Date de publication:
10 Oct 2022
Historique:
received: 08 04 2022
revised: 27 05 2022
accepted: 20 06 2022
pubmed: 27 6 2022
medline: 18 8 2022
entrez: 26 6 2022
Statut: ppublish

Résumé

Since heavy metals and micro-/nanoplastics (MNPLs) can share common environmental niches, their potential interactions could modulate their hazard impacts. The current study was planned to evaluate the potential interactions between silver compounds (silver nanoparticles or silver nitrate) and two different sizes of polystyrene nanoplastics (PSNPLs) (PS-50 and PS-500 nm), administered via ingestion to Drosophila larvae. While egg-to-adult survival was not affected by the exposure to silver compounds, PSNPLs, or their coexposures, the combined treatments succeeded to restore the delay of fly emergence induced by silver compounds. Transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) showed the ability of PSNPLs to transport silver compounds (regardless of their form) across the intestinal barrier, delivering them into the hemolymph of Drosophila larvae in a concentration exceeding that mediated by the exposure to silver compounds alone. The molecular response (gene expression) of Drosophila larvae greatly fluctuated, accordingly if exposures were administered alone or in combination. Although PSNPLs produced some oxidative stress in the hemocytes of Drosophila, especially at the highest dose (1 mM), higher levels were observed after silver exposure, regardless of its form. Interestingly, the oxidative stress of silver, especially that produced by nano‑silver, drastically decreased when coexposed with PSNPLs. Similar effects were observed regarding the DNA damage induced in Drosophila hemocytes, where cotreatment decreased the genotoxicity induced by silver compounds. This antagonistic interaction could be attributed to the ability of tiny plastic specks to confine silver, avoiding its bioavailability, and diminishing their potential impacts.

Identifiants

pubmed: 35753490
pii: S0048-9697(22)04020-7
doi: 10.1016/j.scitotenv.2022.156923
pii:
doi:

Substances chimiques

Microplastics 0
Polystyrenes 0
Silver 3M4G523W1G
Silver Nitrate 95IT3W8JZE

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

156923

Informations de copyright

Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare they have no actual or potential competing financial interests.

Auteurs

Mohamed Alaraby (M)

Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt. Electronic address: mohamed.alaraby@science.sohag.edu.eg.

Doaa Abass (D)

Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt.

Aliro Villacorta (A)

Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile.

Alba Hernández (A)

Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain.

Ricard Marcos (R)

Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain. Electronic address: ricard.marcos@uab.es.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH