Paired associative stimulation applied to the cortex can increase resting-state functional connectivity: A proof of principle study.
Brain stimulation
EEG
Motor
Paired associative stimulation
Resting-state connectivity
TMS
Journal
Neuroscience letters
ISSN: 1872-7972
Titre abrégé: Neurosci Lett
Pays: Ireland
ID NLM: 7600130
Informations de publication
Date de publication:
27 07 2022
27 07 2022
Historique:
received:
27
01
2022
revised:
15
06
2022
accepted:
21
06
2022
pubmed:
27
6
2022
medline:
14
7
2022
entrez:
26
6
2022
Statut:
ppublish
Résumé
There is emerging evidence that high Beta coherence (hBc) between prefrontal and motor corticies, measured with resting-state electroencephalography (rs-EEG), can be an accurate predictor of motor skill learning and stroke recovery. However, it remains unknown whether and how intracortical connectivity may be influenced using neuromodulation. Therefore, a cortico-cortico PAS (ccPAS) paradigm may be used to increase resting-state intracortical connectivity (rs-IC) within a targeted neural circuit. Our purpose is to demonstrate proof of principle that ccPAS can be used to increase rs-IC between a prefrontal and motor cortical region. Eleven non-disabled adults were recruited (mean age 26.4, sd 5.6, 5 female). Each participant underwent a double baseline measurement, followed by a real and control ccPAS condition, counter-balanced for order. Control and ccPAS conditions were performed over electrodes of the right prefrontal and motor cortex. Both ccPAS conditions were identical apart from the inter-stimulus interval (i.e ISI 5 ms: real ccPAS and 500 ms: control ccPAS). Whole brain rs-EEG of high Beta coherence (hBc) was acquired before and after each ccPAS condition and then analyzed for changes in rs-IC along the targeted circuit. Compared to ccPAS500 and baseline, ccPAS5 induced a significant increase in rs-IC, measured as coherence between electrodes over right prefrontal and motor cortex, (p <.05). These findings demonstrate proof of principle that ccPAS with an STDP derived ISI, can effectively increase hBc along a targeted circuit.
Identifiants
pubmed: 35753613
pii: S0304-3940(22)00314-7
doi: 10.1016/j.neulet.2022.136753
pmc: PMC10035603
mid: NIHMS1874820
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
136753Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK110669
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK121724
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD059783
Pays : United States
Organisme : NICHD NIH HHS
ID : R41 HD104296
Pays : United States
Informations de copyright
Copyright © 2022 Elsevier B.V. All rights reserved.
Références
J Neurosci. 2013 Aug 21;33(34):13773-83
pubmed: 23966698
Brain. 2000 Mar;123 Pt 3:572-84
pubmed: 10686179
J Physiol. 2009 Sep 1;587(Pt 17):4281-92
pubmed: 19622612
Brain Stimul. 2018 Sep - Oct;11(5):1063-1070
pubmed: 29709505
Cereb Cortex. 2009 Apr;19(4):907-15
pubmed: 18791179
Front Hum Neurosci. 2012 Sep 19;6:260
pubmed: 23049508
Neuropsychologia. 1971 Mar;9(1):97-113
pubmed: 5146491
Neurorehabil Neural Repair. 2013 Feb;27(2):153-63
pubmed: 22995440
Eur J Neurosci. 2013 Mar;37(5):786-94
pubmed: 23279569
Elife. 2015 Feb 09;4:
pubmed: 25664941
Hum Brain Mapp. 2009 Oct;30(10):3127-41
pubmed: 19235882
Cereb Cortex. 2013 Jul;23(7):1593-605
pubmed: 22661405
Hum Brain Mapp. 2016 May;37(5):1816-30
pubmed: 26876608
Neuroimage. 2020 Apr 15;210:116562
pubmed: 31972278
J Neurosci. 2008 Jul 30;28(31):7911-8
pubmed: 18667623
Neurosci Lett. 2013 Sep 27;552:76-80
pubmed: 23933205
Brain Stimul. 2014 May-Jun;7(3):468-75
pubmed: 24630848
J Neurosci. 1998 Dec 15;18(24):10464-72
pubmed: 9852584
Cerebellum. 2022 Mar 30;:
pubmed: 35355218
J Neurosci. 2013 Jun 5;33(23):9725-33
pubmed: 23739969
Brain Topogr. 2016 Sep;29(5):645-60
pubmed: 27438589
Clin Neurophysiol. 2015 Jun;126(6):1071-1107
pubmed: 25797650
J Neurosci. 1991 Oct;11(10):3200-17
pubmed: 1941080
Clin Neurophysiol. 2017 Jul;128(7):1117-1126
pubmed: 28511124
J Neurosci Methods. 2022 Feb 15;368:109460
pubmed: 34958820
J Neurosci. 2011 Oct 26;31(43):15376-83
pubmed: 22031883
Hum Brain Mapp. 2018 Dec;39(12):4870-4883
pubmed: 30113111
J Neurosci. 2011 Nov 30;31(48):17669-79
pubmed: 22131427
Brain Stimul. 2021 May-Jun;14(3):500-502
pubmed: 33722659
Brain Stimul. 2020 Sep - Oct;13(5):1476-1488
pubmed: 32758665
Neuroimage. 2016 Dec;143:204-213
pubmed: 27591116
J Neurosci. 2014 Sep 17;34(38):12837-49
pubmed: 25232119
Comput Biol Med. 2011 Dec;41(12):1110-7
pubmed: 21794851
Curr Biol. 2018 Jul 9;28(13):R735-R736
pubmed: 29990453
Int J Psychophysiol. 2016 May;103:12-21
pubmed: 25659527
J Neurophysiol. 2018 Feb 1;119(2):490-498
pubmed: 29093171
Stroke. 2018 Sep;49(9):2138-2146
pubmed: 30354990
Cereb Cortex. 2014 Jul;24(7):1697-707
pubmed: 23395849
Neuroimage. 2005 Oct 1;27(4):896-908
pubmed: 16054397
Int Psychogeriatr. 2023 Mar;35(3):143-155
pubmed: 33190659
Neuroimage. 2014 May 1;91:84-90
pubmed: 24473097
Exp Brain Res. 2020 Aug;238(7-8):1677-1684
pubmed: 32705294
Brain. 2015 Aug;138(Pt 8):2359-69
pubmed: 26070983
J Neurophysiol. 2016 Jun 1;115(5):2399-405
pubmed: 26936984