A review of bioenergetic modelling for marine mammal populations.

bioenergetic models cetaceans energy budgets individual-based modelling pinnipeds population consequences of disturbance

Journal

Conservation physiology
ISSN: 2051-1434
Titre abrégé: Conserv Physiol
Pays: England
ID NLM: 101656116

Informations de publication

Date de publication:
2022
Historique:
received: 09 12 2021
revised: 07 03 2022
accepted: 15 06 2022
entrez: 27 6 2022
pubmed: 28 6 2022
medline: 28 6 2022
Statut: epublish

Résumé

Bioenergetic models describe the processes through which animals acquire energy from resources in the environment and allocate it to different life history functions. They capture some of the fundamental mechanisms regulating individuals, populations and ecosystems and have thus been used in a wide variety of theoretical and applied contexts. Here, I review the development of bioenergetic models for marine mammals and their application to management and conservation. For these long-lived, wide-ranging species, bioenergetic approaches were initially used to assess the energy requirements and prey consumption of individuals and populations. Increasingly, models are developed to describe the dynamics of energy intake and allocation and predict how resulting body reserves, vital rates and population dynamics might change as external conditions vary. The building blocks required to develop such models include estimates of intake rate, maintenance costs, growth patterns, energy storage and the dynamics of gestation and lactation, as well as rules for prioritizing allocation. I describe how these components have been parameterized for marine mammals and highlight critical research gaps. Large variation exists among available analytical approaches, reflecting the large range of life histories, management needs and data availability across studies. Flexibility in modelling strategy has supported tailored applications to specific case studies but has resulted in limited generality. Despite the many empirical and theoretical uncertainties that remain, bioenergetic models can be used to predict individual and population responses to environmental change and other anthropogenic impacts, thus providing powerful tools to inform effective management and conservation.

Identifiants

pubmed: 35754757
doi: 10.1093/conphys/coac036
pii: coac036
pmc: PMC9215292
doi:

Types de publication

Journal Article

Langues

eng

Pagination

coac036

Informations de copyright

© The Author(s) 2022. Published by Oxford University Press and the Society for Experimental Biology.

Références

J Anim Ecol. 2022 Jan;91(1):241-254
pubmed: 34739086
Ecol Appl. 2006 Oct;16(5):1893-900
pubmed: 17069380
Proc Biol Sci. 2021 Aug 25;288(1957):20210325
pubmed: 34428966
Proc Biol Sci. 2019 Oct 23;286(1913):20191916
pubmed: 31615360
Nat Commun. 2011 Feb 08;2:186
pubmed: 21304515
Int Stat Rev. 2020 Aug;88(2):441-461
pubmed: 32834401
Proc Biol Sci. 2015 Nov 7;282(1818):20152109
pubmed: 26511044
Environ Sci Technol. 2007 Sep 15;41(18):6613-9
pubmed: 17948816
Ecol Appl. 2007 Dec;17(8):2233-50
pubmed: 18213965
J Exp Biol. 2011 Jan 1;214(Pt 1):131-46
pubmed: 21147977
Ecol Appl. 2006 Dec;16(6):2276-92
pubmed: 17205904
J Exp Biol. 2009 Aug;212(Pt 15):2313-23
pubmed: 19617423
J Exp Biol. 1992 Apr;165:181-94
pubmed: 1588250
PLoS One. 2013 Jul 17;8(7):e68725
pubmed: 23874737
J Mammary Gland Biol Neoplasia. 1997 Jul;2(3):205-30
pubmed: 10882306
Environ Sci Technol. 2013;47(21):12314-24
pubmed: 24073853
Am Nat. 2018 Feb;191(2):E40-E56
pubmed: 29351020
PLoS One. 2021 Jun 3;16(6):e0252677
pubmed: 34081741
Environ Int. 2020 Dec;145:106145
pubmed: 33038624
Conserv Physiol. 2015 Mar 09;3(1):cov001
pubmed: 27293686
Conserv Physiol. 2021 Jan 16;9(1):coaa136
pubmed: 33505701
Ecol Evol. 2017 Dec 27;8(2):1384-1398
pubmed: 29375805
Annu Rev Entomol. 1998;43:63-83
pubmed: 9444750
J Appl Ecol. 2017 Dec;54(6):2063-2068
pubmed: 29225369
J Theor Biol. 2010 May 21;264(2):479-89
pubmed: 20171232
Ecol Evol. 2018 Sep 12;8(19):9934-9946
pubmed: 30386587
Am Nat. 2020 Oct;196(4):E71-E87
pubmed: 32970466
Ecol Lett. 2008 Jan;11(1):1-15
pubmed: 18047588
Conserv Physiol. 2021 Jan 16;9(1):coaa137
pubmed: 33505702
J Exp Biol. 2007 Sep;210(Pt 17):3043-53
pubmed: 17704079
J Comp Physiol B. 2006 Aug;176(6):505-12
pubmed: 16506041
J Fish Biol. 2013 Jun;82(6):2147-52
pubmed: 23731160
Am Nat. 2021 Mar;197(3):296-311
pubmed: 33625969
Ecol Appl. 2019 Jul;29(5):e01903
pubmed: 30980583
Philos Trans R Soc Lond B Biol Sci. 2012 Jan 19;367(1586):298-310
pubmed: 22144392
J Exp Biol. 2012 Mar 15;215(Pt 6):892-902
pubmed: 22357583
Biol Open. 2016 Apr 15;5(4):436-42
pubmed: 26988759
Integr Comp Biol. 2004 Apr;44(2):152-62
pubmed: 21680495
Ecol Appl. 2021 Dec;31(8):e02440
pubmed: 34374143
Curr Biol. 2021 Jul 26;31(14):3174-3179.e3
pubmed: 34087102
Ecol Evol. 2016 Dec 11;7(1):92-106
pubmed: 28070278
Sci Total Environ. 2005 Dec 1;351-352:413-26
pubmed: 16081143
Physiol Biochem Zool. 2014 Nov-Dec;87(6):837-54
pubmed: 25461648
Adv Exp Med Biol. 2016;875:161-9
pubmed: 26610956
PLoS One. 2018 Mar 29;13(3):e0194950
pubmed: 29596456
PLoS One. 2012;7(9):e44854
pubmed: 23024769
Biol Rev Camb Philos Soc. 2021 Oct;96(5):1868-1888
pubmed: 33978325
J Exp Biol. 2017 Mar 15;220(Pt 6):1135-1145
pubmed: 28298467
Philos Trans R Soc Lond B Biol Sci. 2007 Nov 29;362(1487):2151-68
pubmed: 17472918

Auteurs

Enrico Pirotta (E)

Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews KY16 9LZ, UK.

Classifications MeSH