Therapeutic Potential and Safety of the
antioxidant
cytokines
in vivo
oxidative stress
toxicity
toxoplasmosis
Journal
Frontiers in cellular and infection microbiology
ISSN: 2235-2988
Titre abrégé: Front Cell Infect Microbiol
Pays: Switzerland
ID NLM: 101585359
Informations de publication
Date de publication:
2022
2022
Historique:
received:
19
03
2022
accepted:
21
04
2022
entrez:
27
6
2022
pubmed:
28
6
2022
medline:
29
6
2022
Statut:
epublish
Résumé
This experimental study determined the The CZME significantly (p <0.001) increased the mortality rate of parasites in a dose- and time-dependent response. The mean number of intracellular tachyzoites was significantly reduced after CZME therapy. The treatment of infected mice with CZME resulted in a significant (p <0.001) downregulation of BAG1 and the level of lipid peroxidation (LPO) and nitric oxide (NO) as oxidative stress markers. However, a considerable rise (p <0.05) was found in the levels of antioxidant markers such as glutathione peroxidase (GPx), catalase enzyme (CAT), and superoxide dismutase enzyme activity (SOD). In a dose-dependent response, after treatment of infected mice with CZME, the level of pro-inflammatory cytokines of IFN-γ, IL-1β, and IL-12 was considerably elevated. CZME had no significant cytotoxicity on Vero cells, with a 50% cytotoxic concentration of 169.5 ± 5.66 μg/ml. The findings confirmed the promising therapeutic effects of CZME on chronic toxoplasmosis in mice. Nevertheless, further investigations must confirm these results, elucidate its precise mechanisms, and examine its effectiveness in human volunteers.
Sections du résumé
Background
This experimental study determined the
Methods
The
Results
CZME significantly (p <0.001) increased the mortality rate of parasites in a dose- and time-dependent response. The mean number of intracellular tachyzoites was significantly reduced after CZME therapy. The treatment of infected mice with CZME resulted in a significant (p <0.001) downregulation of BAG1 and the level of lipid peroxidation (LPO) and nitric oxide (NO) as oxidative stress markers. However, a considerable rise (p <0.05) was found in the levels of antioxidant markers such as glutathione peroxidase (GPx), catalase enzyme (CAT), and superoxide dismutase enzyme activity (SOD). In a dose-dependent response, after treatment of infected mice with CZME, the level of pro-inflammatory cytokines of IFN-γ, IL-1β, and IL-12 was considerably elevated. CZME had no significant cytotoxicity on Vero cells, with a 50% cytotoxic concentration of 169.5 ± 5.66 μg/ml.
Conclusion
The findings confirmed the promising therapeutic effects of CZME on chronic toxoplasmosis in mice. Nevertheless, further investigations must confirm these results, elucidate its precise mechanisms, and examine its effectiveness in human volunteers.
Identifiants
pubmed: 35755846
doi: 10.3389/fcimb.2022.900046
pmc: PMC9218191
doi:
Substances chimiques
Antioxidants
0
Cytokines
0
Plant Extracts
0
Methanol
Y4S76JWI15
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
900046Informations de copyright
Copyright © 2022 Alanazi and Almohammed.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Molecules. 2021 Feb 08;26(4):
pubmed: 33567639
Asian Pac J Trop Med. 2014 Sep;7S1:S14-21
pubmed: 25312109
Biomed Pharmacother. 2021 Jul;139:111566
pubmed: 33839494
Exp Parasitol. 2020 Jul;214:107904
pubmed: 32371061
J Am Coll Nutr. 2009 Feb;28(1):16-21
pubmed: 19571155
Scand J Infect Dis. 2012 Nov;44(11):805-14
pubmed: 22831461
J Pharmacopuncture. 2017 Sep;20(3):220-226
pubmed: 30087799
Clin Chem. 1988 Mar;34(3):497-500
pubmed: 3349599
Nat Protoc. 2010 Jan;5(1):51-66
pubmed: 20057381
J Ophthalmol. 2014;2014:273506
pubmed: 25197557
Mini Rev Med Chem. 2017;17(1):33-43
pubmed: 26791737
Acta Parasitol. 2021 Jun;66(2):303-328
pubmed: 33159263
J Ethnopharmacol. 2021 Jun 12;273:114019
pubmed: 33716084
Molecules. 2021 Feb 04;26(4):
pubmed: 33557392
Postgrad Med. 2019 Nov;131(8):589-596
pubmed: 31399001
Front Microbiol. 2017 Mar 09;8:389
pubmed: 28337191
Appl Environ Microbiol. 2004 Oct;70(10):5750-5
pubmed: 15466510
EXCLI J. 2020 May 25;19:671-686
pubmed: 32536837
Trends Parasitol. 2011 Nov;27(11):487-95
pubmed: 21893432
Infect Drug Resist. 2021 Nov 30;14:5057-5068
pubmed: 34876824
Neonatal Netw. 2015;34(5):274-8
pubmed: 26802827
ScientificWorldJournal. 2020 Mar 16;2020:8780704
pubmed: 32256249
Saudi J Biol Sci. 2021 Nov;28(11):6454-6460
pubmed: 34764762
Plant Foods Hum Nutr. 2019 Sep;74(3):266-276
pubmed: 31243622
Int J Nanomedicine. 2018 Nov 09;13:7363-7374
pubmed: 30519020
Fitoterapia. 2019 Nov;139:104405
pubmed: 31707126
Rev Biol Trop. 2015 Mar;63(1):7-12
pubmed: 26299111
Int Immunol. 2018 Mar 10;30(3):113-119
pubmed: 29408976
Exp Parasitol. 2018 Sep;192:6-11
pubmed: 30031121
mBio. 2014 Feb 18;5(1):
pubmed: 24549849
Drugs R D. 2017 Dec;17(4):523-544
pubmed: 28879584
Clin Ther. 2008 Nov;30(11):2069-74
pubmed: 19108794
Drug Des Devel Ther. 2017 Jan 25;11:273-293
pubmed: 28182168
3 Biotech. 2015 Dec;5(6):939-947
pubmed: 28324396
Planta Med. 2016 Nov;82(17):1482-1486
pubmed: 27433883
Microbiologyopen. 2017 Aug;6(4):
pubmed: 28296357
Foods. 2017 Aug 24;6(9):
pubmed: 28837070
Microorganisms. 2021 Oct 07;9(10):
pubmed: 34683434
J Parasit Dis. 2022 Mar;46(1):24-36
pubmed: 35299906
J Pharmacopuncture. 2019 Sep;22(3):154-159
pubmed: 31673445
J Ethnopharmacol. 2018 Jun 12;219:110-116
pubmed: 29408310
Sci Rep. 2020 Sep 16;10(1):15158
pubmed: 32938966
Front Cell Infect Microbiol. 2017 Apr 07;7:116
pubmed: 28439500
Evid Based Complement Alternat Med. 2021 Jul 19;2021:5543889
pubmed: 34335818
BMC Complement Altern Med. 2013 Oct 22;13:275
pubmed: 24148965
Obstet Gynecol Surv. 2001 May;56(5):296-305
pubmed: 11333376
PLoS One. 2015 Sep 22;10(9):e0138204
pubmed: 26394212