Validation of a Monte Carlo Framework for Out-of-Field Dose Calculations in Proton Therapy.
Monte Carlo simulation
TLD
anthropomorphic pediatric phantom
bubble detector
out-of-field dosimetry
proton therapy
Journal
Frontiers in oncology
ISSN: 2234-943X
Titre abrégé: Front Oncol
Pays: Switzerland
ID NLM: 101568867
Informations de publication
Date de publication:
2022
2022
Historique:
received:
23
02
2022
accepted:
04
05
2022
entrez:
27
6
2022
pubmed:
28
6
2022
medline:
28
6
2022
Statut:
epublish
Résumé
Proton therapy enables to deliver highly conformed dose distributions owing to the characteristic Bragg peak and the finite range of protons. However, during proton therapy, secondary neutrons are created, which can travel long distances and deposit dose in out-of-field volumes. This out-of-field absorbed dose needs to be considered for radiation-induced secondary cancers, which are particularly relevant in the case of pediatric treatments. Unfortunately, no method exists in clinics for the computation of the out-of-field dose distributions in proton therapy. To help overcome this limitation, a computational tool has been developed based on the Monte Carlo code TOPAS. The purpose of this work is to evaluate the accuracy of this tool in comparison to experimental data obtained from an anthropomorphic phantom irradiation. An anthropomorphic phantom of a 5-year-old child (ATOM, CIRS) was irradiated for a brain tumor treatment in an IBA Proteus Plus facility using a pencil beam dedicated nozzle. The treatment consisted of three pencil beam scanning fields employing a lucite range shifter. Proton energies ranged from 100 to 165 MeV. A median dose of 50.4 Gy(RBE) with 1.8 Gy(RBE) per fraction was prescribed to the initial planning target volume (PTV), which was located in the cerebellum. Thermoluminescent detectors (TLDs), namely, Li-7-enriched LiF : Mg, Ti (MTS-7) type, were used to detect gamma radiation, which is produced by nuclear reactions, and secondary as well as recoil protons created out-of-field by secondary neutrons. Li-6-enriched LiF : Mg,Cu,P (MCP-6) was combined with Li-7-enriched MCP-7 to measure thermal neutrons. TLDs were calibrated in Co-60 and reported on absorbed dose in water per target dose (μGy/Gy) as well as thermal neutron dose equivalent per target dose (μSv/Gy). Additionally, bubble detectors for personal neutron dosimetry (BD-PND) were used for measuring neutrons (>50 keV), which were calibrated in a Cf-252 neutron beam to report on neutron dose equivalent dose data. The Monte Carlo code TOPAS (version 3.6) was run using a phase-space file containing 10
Identifiants
pubmed: 35756661
doi: 10.3389/fonc.2022.882489
pmc: PMC9213663
doi:
Types de publication
Journal Article
Langues
eng
Pagination
882489Informations de copyright
Copyright © 2022 De Saint-Hubert, Verbeek, Bäumer, Esser, Wulff, Nabha, Van Hoey, Dabin, Stuckmann, Vasi, Radonic, Boissonnat, Schneider, Rodriguez, Timmermann, Thierry-Chef and Brualla.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Radiat Prot Dosimetry. 2018 Aug 1;180(1-4):256-260
pubmed: 29165619
Nat Rev Cancer. 2011 Jun;11(6):438-48
pubmed: 21593785
Phys Med Biol. 1996 Jan;41(1):111-24
pubmed: 8685250
Med Phys. 2012 Nov;39(11):6818-37
pubmed: 23127075
Nucl Instrum Methods Phys Res B. 2001 Sep;184(1-2):255-94
pubmed: 11863032
Med Phys. 2016 Jan;43(1):360
pubmed: 26745929
Med Phys. 2017 Oct;44(10):e391-e429
pubmed: 28688159
Z Med Phys. 2015 Jun;25(2):186-91
pubmed: 24973310
Radiat Prot Dosimetry. 2017 Nov 1;176(3):331-340
pubmed: 28338841
Phys Med Biol. 2015 Jul 21;60(14):5627-54
pubmed: 26146956
Radiat Prot Dosimetry. 2018 Aug 1;180(1-4):192-195
pubmed: 29036395
Phys Med Biol. 2021 Nov 24;66(22):
pubmed: 34673555
Rep Pract Oncol Radiother. 2014 May 01;19(6):376-84
pubmed: 25337410
Phys Med Biol. 2007 Jun 7;52(11):3151-68
pubmed: 17505095
Med Phys. 2015 Jan;42(1):40-53
pubmed: 25563246
Phys Med. 2021 Feb;82:134-143
pubmed: 33611050
Med Phys. 2017 May;44(5):1912-1920
pubmed: 28294362
Phys Med Biol. 2015 Jan 21;60(2):633-45
pubmed: 25549079
Med Phys. 2021 Jun;48(6):3186-3199
pubmed: 33772808
Radiat Prot Dosimetry. 2016 Sep;170(1-4):336-41
pubmed: 26541188
Phys Med Biol. 2014 May 21;59(10):2457-68
pubmed: 24778349
Med Phys. 2011 May;38(5):2619-28
pubmed: 21776799
Phys Med Biol. 2021 Jan 26;66(3):035012
pubmed: 33202399
Med Phys. 1997 Dec;24(12):2024-33
pubmed: 9434986
Med Phys. 2021 Jan;48(1):456-476
pubmed: 33217026
Radiat Prot Dosimetry. 2015 Sep;166(1-4):311-5
pubmed: 25870432
Z Med Phys. 2021 May;31(2):215-228
pubmed: 33622567
Med Phys. 2017 Jun;44(6):2556-2568
pubmed: 28370020
Radiat Prot Dosimetry. 2021 May 31;194(1):42-56
pubmed: 33989429
Phys Med Biol. 2009 Apr 21;54(8):2259-75
pubmed: 19305045
Med Phys. 2021 Jan;48(1):19-56
pubmed: 32392626
Phys Med Biol. 2018 Apr 19;63(8):085017
pubmed: 29509148
J Appl Clin Med Phys. 2015 Nov 08;16(6):151–163
pubmed: 26699567
Phys Med Biol. 2016 Jan 21;61(2):683-95
pubmed: 26716718
Acta Oncol. 2015 May;54(5):655-68
pubmed: 25813473
Phys Med Biol. 2012 Mar 7;57(5):1147-58
pubmed: 22330090