Pattern mechanism in stochastic SIR networks with ER connectivity.

34F10 35B36 92C42 Delay Matrix Network Pattern formation SIR Turing instability

Journal

Physica A
ISSN: 0378-4371
Titre abrégé: Physica A
Pays: Netherlands
ID NLM: 9890571

Informations de publication

Date de publication:
01 Oct 2022
Historique:
received: 23 02 2022
revised: 13 05 2022
pubmed: 28 6 2022
medline: 28 6 2022
entrez: 27 6 2022
Statut: ppublish

Résumé

The diffusion of the susceptible and infected is a vital factor in spreading infectious diseases. However, the previous SIR networks cannot explain the dynamical mechanism of periodic behavior and endemic diseases. Here, we incorporate the diffusion and network effect into the SIR model and describes the mechanism of periodic behavior and endemic diseases through wavenumber and saddle-node bifurcation. We also introduce the standard network structured entropy (NSE) and demonstrate diffusion effect could induce the saddle-node bifurcation and Turing instability. Then we reveal the mechanism of the periodic outbreak and endemic diseases by the mean-field method. We provide the Turing instability condition through wavenumber in this network-organized SIR model. In the end, the data from COVID-19 authenticated the theoretical results.

Identifiants

pubmed: 35757185
doi: 10.1016/j.physa.2022.127765
pii: S0378-4371(22)00508-8
pmc: PMC9212650
doi:

Types de publication

Journal Article

Langues

eng

Pagination

127765

Informations de copyright

© 2022 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

Sci Rep. 2016 Aug 19;6:31505
pubmed: 27539010
Bull Math Biol. 1998 Nov;60(6):1123-48
pubmed: 9866452
J Biol Dyn. 2018 Dec;12(1):486-508
pubmed: 29855227
Cogn Neurodyn. 2021 Apr;15(2):299-313
pubmed: 33854646
Cogn Neurodyn. 2021 Dec;15(6):1101-1124
pubmed: 34786031
J Theor Biol. 1971 Sep;32(3):507-37
pubmed: 5571122
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052721
pubmed: 24329310
Commun Nonlinear Sci Numer Simul. 2021 Nov;102:105927
pubmed: 34149236
Phys Rev E. 2020 Dec;102(6-1):062215
pubmed: 33466067
J Math Biol. 2018 Oct;77(4):1117-1151
pubmed: 29752517
Math Biosci Eng. 2010 Oct;7(4):837-50
pubmed: 21077711
Phys Rev E. 2019 Jun;99(6-1):062303
pubmed: 31330727
J Biol Dyn. 2008 Oct;2(4):392-414
pubmed: 22876905
J Theor Biol. 2018 Jul 14;449:1-13
pubmed: 29649430
Math Biosci Eng. 2021 Oct 26;18(6):9253-9263
pubmed: 34814344
Nat Commun. 2014 Jul 31;5:4517
pubmed: 25077521
Chaos. 2013 Mar;23(1):013110
pubmed: 23556947
Chaos Solitons Fractals. 2020 Oct;139:110057
pubmed: 32834610
Physica A. 2021 Nov 1;581:126223
pubmed: 34230756
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022818
pubmed: 26382465

Auteurs

Qianqian Zheng (Q)

School of Science, Xuchang University, Xuchang, Henan 461000, China.
School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.

Jianwei Shen (J)

School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China.

Yong Xu (Y)

School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.

Vikas Pandey (V)

School of Medicine, University of California, Los Angeles, CA 90095, USA.
NIPS, National Institute of Natural Science, Okazaki 4448585, Japan.

Linan Guan (L)

School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China.

Classifications MeSH