Automated bone healing evaluation: New approach to histomorphometric analysis.

automated image analysis bone regeneration computer-assisted hyperbaric oxygenation type 1 diabetes mellitus

Journal

Microscopy research and technique
ISSN: 1097-0029
Titre abrégé: Microsc Res Tech
Pays: United States
ID NLM: 9203012

Informations de publication

Date de publication:
Oct 2022
Historique:
revised: 16 05 2022
received: 18 10 2021
accepted: 10 06 2022
pubmed: 28 6 2022
medline: 28 9 2022
entrez: 27 6 2022
Statut: ppublish

Résumé

This study aimed to assess different approaches for bone healing evaluation on histological images and to introduce a new automatic evaluation method based on segmentation with distinct thresholds. We evaluated the hyperbaric oxygen therapy (HBO) effects on bone repair in type 1 diabetes mellitus rats. Twelve animals were divided into four groups (n = 3): non-diabetic, non-diabetic + HBO, diabetic, and diabetic + HBO. Diabetes was induced by intravenous administration of streptozotocin (50 mg/kg). Bone defects were created in femurs and HBO was immediately started at one session/day. After 7 days, the animals were euthanized, femurs were removed, demineralized, and embedded in paraffin. Histological sections were stained with hematoxylin and eosin (HE) and Mallory's trichrome (MT), and evaluated using three approaches: (1) conventional histomorphometric analysis (HE images) using a 144-point grid to quantify the bone matrix; (2) a semi-automatic method based on bone matrix segmentation to assess the bone matrix percentage (MT images); and (3) automatic approach, with the creation of a plug-in for ImageJ software. The time required to perform the analysis in each method was measured and subjected to Bland-Altman statistical analysis. All three methods were satisfactory for measuring bone formation and were not statistically different. The automatic approach reduced the working time compared to visual grid and semi-automated method (p < .01). Although histological evaluation of bone healing was performed successfully using all three methods, the novel automatic approach significantly shortened the time required for analysis and had high accuracy.

Identifiants

pubmed: 35758056
doi: 10.1002/jemt.24188
doi:

Substances chimiques

Streptozocin 5W494URQ81
Paraffin 8002-74-2
Eosine Yellowish-(YS) TDQ283MPCW
Hematoxylin YKM8PY2Z55

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3339-3346

Subventions

Organisme : Research Support Foundation of the State of Minas Gerais (FAPEMIG/Brazil)
ID : 001
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
ID : APQ-02003-14

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Batista, J. D., Sargenti-Neto, S., Dechichi, P., Rocha, F. S., & Pagnoncelli, R. M. (2015). Low-level laser therapy on bone repair: Is there any effect outside the irradiated field? Lasers in Medical Science, 30(5), 1569-1574. https://doi.org/10.1007/s10103-015-1752-3
Dias, P. C., Limirio, P., Linhares, C. R. B., Bergamini, M. L., Rocha, F. S., Morais, R. B., Balbi, A. P. C., Hiraki, K. R. N., & Dechichi, P. (2018). Hyperbaric oxygen therapy effects on bone regeneration in type 1 diabetes mellitus in rats. Connective Tissue Research, 59(6), 574-580. https://doi.org/10.1080/03008207.2018.1434166
Faleo, G., Fotino, C., Bocca, N., Molano, R. D., Zahr-Akrawi, E., Molina, J., Villate, S., Umland, O., Skyler, J. S., Bayer, A. L., Ricordi, C., & Pileggi, A. (2012). Prevention of autoimmune diabetes and induction of beta-cell proliferation in NOD mice by hyperbaric oxygen therapy. Diabetes, 61(7), 1769-1778. https://doi.org/10.2337/db11-0516
Fotino, C., Molano, R. D., Ricordi, C., & Pileggi, A. (2013). Transdisciplinary approach to restore pancreatic islet function. Immunologic Research, 57(1-3), 210-221. https://doi.org/10.1007/s12026-013-8437-4
Gonzalez, R. C., & Woods, R. E. (2018). Digital image processing. Pearson.
Hammes, J., Tager, P., & Drzezga, A. (2018). EBONI: A tool for automated quantification of bone metastasis load in PSMA PET/CT. Journal of Nuclear Medicine, 59(7), 1070-1075. https://doi.org/10.2967/jnumed.117.203265
Jones, T. R., Carpenter, A. E., Lamprecht, M. R., Moffat, J., Silver, S. J., Grenier, J. K., Castoreno, A. B., Eggert, U. S., Root, D. E., Golland, P., & Sabatini, D. M. (2009). Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1826-1831. https://doi.org/10.1073/pnas.0808843106
Kim, J. J., Nam, J., & Jang, I. G. (2018). Fully automated segmentation of a hip joint using the patient-specific optimal thresholding and watershed algorithm. Computer Methods and Programs in Biomedicine, 154, 161-171. https://doi.org/10.1016/j.cmpb.2017.11.007
Lamprecht, M. R., Sabatini, D. M., & Carpenter, A. E. (2007). CellProfiler: Free, versatile software for automated biological image analysis. BioTechniques, 42(1), 71-75. https://doi.org/10.2144/000112257
Limirio, P., da Rocha Junior, H. A., Morais, R. B., Hiraki, K. R. N., Balbi, A. P. C., Soares, P. B. F., & Dechichi, P. (2018). Influence of hyperbaric oxygen on biomechanics and structural bone matrix in type 1 diabetes mellitus rats. PLoS One, 13(2), e0191694. https://doi.org/10.1371/journal.pone.0191694
Lu, M. P., Wang, R., Song, X., Chibbar, R., Wang, X., Wu, L., & Meng, Q. H. (2008). Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutrition Research, 28(7), 464-471. https://doi.org/10.1016/j.nutres.2008.03.009
Mendes, E. M., Irie, M. S., Rabelo, G. D., Borges, J. S., Dechichi, P., Diniz, R. S., & Soares, P. B. F. (2020). Effects of ionizing radiation on woven bone: Influence on the osteocyte lacunar network, collagen maturation, and microarchitecture. Clinical Oral Investigations, 24(8), 2763-2771. https://doi.org/10.1007/s00784-019-03138-x
Napoli, N., Chandran, M., Pierroz, D. D., Abrahamsen, B., Schwartz, A. V., Ferrari, S. L., & IOF Bone and Diabetes Working Group. (2017). Mechanisms of diabetes mellitus-induced bone fragility. Nature Reviews. Endocrinology, 13(4), 208-219. https://doi.org/10.1038/nrendo.2016.153
Nyman, J. S., Even, J. L., Jo, C. H., Herbert, E. G., Murry, M. R., Cockrell, G. E., Wahl, E. C., Bunn, R. C., Lumpkin, C. K., Jr., Fowlkes, J. L., & Thrailkill, K. M. (2011). Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone, 48(4), 733-740. https://doi.org/10.1016/j.bone.2010.12.016
Okubo, Y., Bessho, K., Fujimura, K., Kusumoto, K., Ogawa, Y., & Iizuka, T. (2001). Effect of hyperbaric oxygenation on bone induced by recombinant human bone morphogenetic protein-2. The British Journal of Oral & Maxillofacial Surgery, 39(2), 91-95. https://doi.org/10.1054/bjom.2000.0550
Palermo, A., D'Onofrio, L., Buzzetti, R., Manfrini, S., & Napoli, N. (2017). Pathophysiology of bone fragility in patients with diabetes. Calcified Tissue International, 100(2), 122-132. https://doi.org/10.1007/s00223-016-0226-3
Prabowo, S., Nataatmadja, M., Hadi, J., Dikman, I., Handajani, F., Tehupuring, S., Soetarso, I., Suryokusumo, M., Aulani, A., Herawati, A., & West, M. (2014). Hyperbaric oxygen treatment in a diabetic rat model is associated with a decrease in blood glucose, regression of organ damage and improvement in wound healing. Health, 06, 1950-1958. https://doi.org/10.4236/health.2014.615228
Rajagopalan, G., Kudva, Y. C., & David, C. S. (2012). Is HOT a cool treatment for type 1 diabetes? Diabetes, 61(7), 1664-1666. https://doi.org/10.2337/db12-0527
Reyes-Fernandez, P. C., Periou, B., Decrouy, X., Relaix, F., & Authier, F. J. (2019). Automated image-analysis method for the quantification of fiber morphometry and fiber type population in human skeletal muscle. Skeletal Muscle, 9(1), 15. https://doi.org/10.1186/s13395-019-0200-7
Rocha, F. S., Limirio, P. H., Zanetta-Barbosa, D., Batista, J. D., & Dechichi, P. (2016). The effects of ionizing radiation on the growth plate in rat tibiae. Microscopy Research and Technique, 79(12), 1147-1151. https://doi.org/10.1002/jemt.22769
Schindelin, J., Rueden, C. T., Hiner, M. C., & Eliceiri, K. W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, 82(7-8), 518-529. https://doi.org/10.1002/mrd.22489
Silva, A., Martins, S., Neves, L., de Faria, P., Tosta, T., & Zanchetta do Nascimento, M. (2019). Automated nuclei segmentation in dysplastic histopathological oral tissues using deep neural networks. In Progress in pattern recognition, image analysis, computer vision, and applications (pp. 365-374), Barbosa.
Soares, P. B. F., Soares, C. J., Limirio, P., de Jesus, R. N. R., Dechichi, P., Spin-Neto, R., & Zanetta-Barbosa, D. (2019). Effect of ionizing radiation after-therapy interval on bone: Histomorphometric and biomechanical characteristics. Clinical Oral Investigations, 23(6), 2785-2793. https://doi.org/10.1007/s00784-018-2724-3
Steiner, D. F., MacDonald, R., Liu, Y., Truszkowski, P., Hipp, J. D., Gammage, C., Thng, F., Peng, L., & Stumpe, M. C. (2018). Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. The American Journal of Surgical Pathology, 42(12), 1636-1646. https://doi.org/10.1097/PAS.0000000000001151
Tamminga, G. G., Paulitsch-Fuchs, A. H., Jansen, G. J., & Euverink, G. W. (2016). Different binarization processes validated against manual counts of fluorescent bacterial cells. Journal of Microbiological Methods, 128, 118-124. https://doi.org/10.1016/j.mimet.2016.07.003
Wang, S., Yang, D. M., Rong, R., Zhan, X., & Xiao, G. (2019). Pathology image analysis using segmentation deep learning algorithms. The American Journal of Pathology, 189(9), 1686-1698. https://doi.org/10.1016/j.ajpath.2019.05.007
Wu, D., Malda, J., Crawford, R., & Xiao, Y. (2007). Effects of hyperbaric oxygen on proliferation and differentiation of osteoblasts from human alveolar bone. Connective Tissue Research, 48(4), 206-213. https://doi.org/10.1080/03008200701458749

Auteurs

Camila Rodrigues Borges Linhares (CRB)

Dentistry Department, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.

Gustavo Davi Rabelo (GD)

Dentistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.

Pedro Henrique Justino Oliveira Limirio (PHJO)

Dentistry Department, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.

Jessyca Figueira Venâncio (JF)

Dentistry Department, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.

Igor Gonçalves Ribeiro Silva (IG)

Department of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.

Paula Dechichi (P)

Department of Cell Biology, Histology and Embryology, Biomedical Science Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH