Automated bone healing evaluation: New approach to histomorphometric analysis.
automated image analysis
bone regeneration
computer-assisted
hyperbaric oxygenation
type 1 diabetes mellitus
Journal
Microscopy research and technique
ISSN: 1097-0029
Titre abrégé: Microsc Res Tech
Pays: United States
ID NLM: 9203012
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
revised:
16
05
2022
received:
18
10
2021
accepted:
10
06
2022
pubmed:
28
6
2022
medline:
28
9
2022
entrez:
27
6
2022
Statut:
ppublish
Résumé
This study aimed to assess different approaches for bone healing evaluation on histological images and to introduce a new automatic evaluation method based on segmentation with distinct thresholds. We evaluated the hyperbaric oxygen therapy (HBO) effects on bone repair in type 1 diabetes mellitus rats. Twelve animals were divided into four groups (n = 3): non-diabetic, non-diabetic + HBO, diabetic, and diabetic + HBO. Diabetes was induced by intravenous administration of streptozotocin (50 mg/kg). Bone defects were created in femurs and HBO was immediately started at one session/day. After 7 days, the animals were euthanized, femurs were removed, demineralized, and embedded in paraffin. Histological sections were stained with hematoxylin and eosin (HE) and Mallory's trichrome (MT), and evaluated using three approaches: (1) conventional histomorphometric analysis (HE images) using a 144-point grid to quantify the bone matrix; (2) a semi-automatic method based on bone matrix segmentation to assess the bone matrix percentage (MT images); and (3) automatic approach, with the creation of a plug-in for ImageJ software. The time required to perform the analysis in each method was measured and subjected to Bland-Altman statistical analysis. All three methods were satisfactory for measuring bone formation and were not statistically different. The automatic approach reduced the working time compared to visual grid and semi-automated method (p < .01). Although histological evaluation of bone healing was performed successfully using all three methods, the novel automatic approach significantly shortened the time required for analysis and had high accuracy.
Substances chimiques
Streptozocin
5W494URQ81
Paraffin
8002-74-2
Eosine Yellowish-(YS)
TDQ283MPCW
Hematoxylin
YKM8PY2Z55
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3339-3346Subventions
Organisme : Research Support Foundation of the State of Minas Gerais (FAPEMIG/Brazil)
ID : 001
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
ID : APQ-02003-14
Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Batista, J. D., Sargenti-Neto, S., Dechichi, P., Rocha, F. S., & Pagnoncelli, R. M. (2015). Low-level laser therapy on bone repair: Is there any effect outside the irradiated field? Lasers in Medical Science, 30(5), 1569-1574. https://doi.org/10.1007/s10103-015-1752-3
Dias, P. C., Limirio, P., Linhares, C. R. B., Bergamini, M. L., Rocha, F. S., Morais, R. B., Balbi, A. P. C., Hiraki, K. R. N., & Dechichi, P. (2018). Hyperbaric oxygen therapy effects on bone regeneration in type 1 diabetes mellitus in rats. Connective Tissue Research, 59(6), 574-580. https://doi.org/10.1080/03008207.2018.1434166
Faleo, G., Fotino, C., Bocca, N., Molano, R. D., Zahr-Akrawi, E., Molina, J., Villate, S., Umland, O., Skyler, J. S., Bayer, A. L., Ricordi, C., & Pileggi, A. (2012). Prevention of autoimmune diabetes and induction of beta-cell proliferation in NOD mice by hyperbaric oxygen therapy. Diabetes, 61(7), 1769-1778. https://doi.org/10.2337/db11-0516
Fotino, C., Molano, R. D., Ricordi, C., & Pileggi, A. (2013). Transdisciplinary approach to restore pancreatic islet function. Immunologic Research, 57(1-3), 210-221. https://doi.org/10.1007/s12026-013-8437-4
Gonzalez, R. C., & Woods, R. E. (2018). Digital image processing. Pearson.
Hammes, J., Tager, P., & Drzezga, A. (2018). EBONI: A tool for automated quantification of bone metastasis load in PSMA PET/CT. Journal of Nuclear Medicine, 59(7), 1070-1075. https://doi.org/10.2967/jnumed.117.203265
Jones, T. R., Carpenter, A. E., Lamprecht, M. R., Moffat, J., Silver, S. J., Grenier, J. K., Castoreno, A. B., Eggert, U. S., Root, D. E., Golland, P., & Sabatini, D. M. (2009). Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1826-1831. https://doi.org/10.1073/pnas.0808843106
Kim, J. J., Nam, J., & Jang, I. G. (2018). Fully automated segmentation of a hip joint using the patient-specific optimal thresholding and watershed algorithm. Computer Methods and Programs in Biomedicine, 154, 161-171. https://doi.org/10.1016/j.cmpb.2017.11.007
Lamprecht, M. R., Sabatini, D. M., & Carpenter, A. E. (2007). CellProfiler: Free, versatile software for automated biological image analysis. BioTechniques, 42(1), 71-75. https://doi.org/10.2144/000112257
Limirio, P., da Rocha Junior, H. A., Morais, R. B., Hiraki, K. R. N., Balbi, A. P. C., Soares, P. B. F., & Dechichi, P. (2018). Influence of hyperbaric oxygen on biomechanics and structural bone matrix in type 1 diabetes mellitus rats. PLoS One, 13(2), e0191694. https://doi.org/10.1371/journal.pone.0191694
Lu, M. P., Wang, R., Song, X., Chibbar, R., Wang, X., Wu, L., & Meng, Q. H. (2008). Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutrition Research, 28(7), 464-471. https://doi.org/10.1016/j.nutres.2008.03.009
Mendes, E. M., Irie, M. S., Rabelo, G. D., Borges, J. S., Dechichi, P., Diniz, R. S., & Soares, P. B. F. (2020). Effects of ionizing radiation on woven bone: Influence on the osteocyte lacunar network, collagen maturation, and microarchitecture. Clinical Oral Investigations, 24(8), 2763-2771. https://doi.org/10.1007/s00784-019-03138-x
Napoli, N., Chandran, M., Pierroz, D. D., Abrahamsen, B., Schwartz, A. V., Ferrari, S. L., & IOF Bone and Diabetes Working Group. (2017). Mechanisms of diabetes mellitus-induced bone fragility. Nature Reviews. Endocrinology, 13(4), 208-219. https://doi.org/10.1038/nrendo.2016.153
Nyman, J. S., Even, J. L., Jo, C. H., Herbert, E. G., Murry, M. R., Cockrell, G. E., Wahl, E. C., Bunn, R. C., Lumpkin, C. K., Jr., Fowlkes, J. L., & Thrailkill, K. M. (2011). Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone, 48(4), 733-740. https://doi.org/10.1016/j.bone.2010.12.016
Okubo, Y., Bessho, K., Fujimura, K., Kusumoto, K., Ogawa, Y., & Iizuka, T. (2001). Effect of hyperbaric oxygenation on bone induced by recombinant human bone morphogenetic protein-2. The British Journal of Oral & Maxillofacial Surgery, 39(2), 91-95. https://doi.org/10.1054/bjom.2000.0550
Palermo, A., D'Onofrio, L., Buzzetti, R., Manfrini, S., & Napoli, N. (2017). Pathophysiology of bone fragility in patients with diabetes. Calcified Tissue International, 100(2), 122-132. https://doi.org/10.1007/s00223-016-0226-3
Prabowo, S., Nataatmadja, M., Hadi, J., Dikman, I., Handajani, F., Tehupuring, S., Soetarso, I., Suryokusumo, M., Aulani, A., Herawati, A., & West, M. (2014). Hyperbaric oxygen treatment in a diabetic rat model is associated with a decrease in blood glucose, regression of organ damage and improvement in wound healing. Health, 06, 1950-1958. https://doi.org/10.4236/health.2014.615228
Rajagopalan, G., Kudva, Y. C., & David, C. S. (2012). Is HOT a cool treatment for type 1 diabetes? Diabetes, 61(7), 1664-1666. https://doi.org/10.2337/db12-0527
Reyes-Fernandez, P. C., Periou, B., Decrouy, X., Relaix, F., & Authier, F. J. (2019). Automated image-analysis method for the quantification of fiber morphometry and fiber type population in human skeletal muscle. Skeletal Muscle, 9(1), 15. https://doi.org/10.1186/s13395-019-0200-7
Rocha, F. S., Limirio, P. H., Zanetta-Barbosa, D., Batista, J. D., & Dechichi, P. (2016). The effects of ionizing radiation on the growth plate in rat tibiae. Microscopy Research and Technique, 79(12), 1147-1151. https://doi.org/10.1002/jemt.22769
Schindelin, J., Rueden, C. T., Hiner, M. C., & Eliceiri, K. W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, 82(7-8), 518-529. https://doi.org/10.1002/mrd.22489
Silva, A., Martins, S., Neves, L., de Faria, P., Tosta, T., & Zanchetta do Nascimento, M. (2019). Automated nuclei segmentation in dysplastic histopathological oral tissues using deep neural networks. In Progress in pattern recognition, image analysis, computer vision, and applications (pp. 365-374), Barbosa.
Soares, P. B. F., Soares, C. J., Limirio, P., de Jesus, R. N. R., Dechichi, P., Spin-Neto, R., & Zanetta-Barbosa, D. (2019). Effect of ionizing radiation after-therapy interval on bone: Histomorphometric and biomechanical characteristics. Clinical Oral Investigations, 23(6), 2785-2793. https://doi.org/10.1007/s00784-018-2724-3
Steiner, D. F., MacDonald, R., Liu, Y., Truszkowski, P., Hipp, J. D., Gammage, C., Thng, F., Peng, L., & Stumpe, M. C. (2018). Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. The American Journal of Surgical Pathology, 42(12), 1636-1646. https://doi.org/10.1097/PAS.0000000000001151
Tamminga, G. G., Paulitsch-Fuchs, A. H., Jansen, G. J., & Euverink, G. W. (2016). Different binarization processes validated against manual counts of fluorescent bacterial cells. Journal of Microbiological Methods, 128, 118-124. https://doi.org/10.1016/j.mimet.2016.07.003
Wang, S., Yang, D. M., Rong, R., Zhan, X., & Xiao, G. (2019). Pathology image analysis using segmentation deep learning algorithms. The American Journal of Pathology, 189(9), 1686-1698. https://doi.org/10.1016/j.ajpath.2019.05.007
Wu, D., Malda, J., Crawford, R., & Xiao, Y. (2007). Effects of hyperbaric oxygen on proliferation and differentiation of osteoblasts from human alveolar bone. Connective Tissue Research, 48(4), 206-213. https://doi.org/10.1080/03008200701458749