Body size responses to the combined effects of climate and land use changes within an urban framework.
anthropogenic
habitat fragmentation
precipitation
resource availability
thermal ecology
urbanization
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
25
11
2021
accepted:
17
05
2022
pubmed:
28
6
2022
medline:
17
8
2022
entrez:
27
6
2022
Statut:
ppublish
Résumé
Alterations in body size can have profound impacts on an organism's life history and ecology with long-lasting effects that span multiple biological scales. Animal body size is influenced by environmental drivers, including climate change and land use change, the two largest current threats to biodiversity. Climate warming has led to smaller body sizes of many species due to impacts on growth (i.e., Bergmann's rule and temperature-size rule). Conversely, urbanization, which serves as a model for investigating the effects of land use changes, has largely been demonstrated to cause size increases, but few studies have examined the combined influences of climate and land use changes on organism size. We present here the background theory on how each of these factors is expected to influence body size, summarize existing evidence of how size has recently been impacted by climate and land use changes, and make several recommendations to guide future research uniting these areas of focus. Given the rapid pace of climate change and urbanization, understanding the combined effects of climate and land use changes on body size is imperative for biodiversity preservation.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
5385-5398Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
Alberti, M., Marzluff, J., & Hunt, V. M. (2017). Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philosophical Transactions of the Royal Society B, 372, 20160029.
Allen, J. A. (1877). The influence of physical conditions in the genesis of species. Radical Review, 1, 108-140.
Amiel, J. J., Tingley, R., & Shine, R. (2011). Smart moves: Effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS One, 6(4), e18277. https://doi.org/10.1371/journal.pone.0018277
Angilletta, M. J. J., & Dunham, A. E. (2003). The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. American Naturalist, 162, 332-342.
Angilletta, M. J. J., Niewiarowski, P. H., Dunham, A. E., Leaché, A. D., & Porter, W. P. (2004). Bergmann's clines in ectotherms: Illustrating a life-history perspective with Sceloporine lizards. The American Naturalist, 164, E168-E183.
Arnold, C. L., & Gibbons, C. J. (2007). Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association, 62, 243-258.
Ashton, K. G. (2002). Do amphibians follow Bergmann's rule? Canadian Journal of Zoology, 80, 708-716.
Ashton, K. G., & Feldman, C. R. (2003). Bergmann's rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution, 57, 1151-1163.
Atkinson, D. (1994). Temperature and organism size-A biological law for ectotherms? Advances in Ecological Research, 25, 1-58.
Atkinson, D., & Sibly, R. M. (1997). Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution, 12, 235-239.
Auman, H., Meathrel, C., & Richardson, A. (2008). Supersize me: Does anthropogenic food change the body condition of silver gulls? A comparison between urbanized and remote, non-urbanized areas. Waterbirds, 31, 122-126.
Baar, Y., Friedman, A. L. L., Meiri, S., & Scharf, I. (2018). Little effect of climate change on body size of herbivorous beetles. Insect Science, 25, 309-316.
Baker, P. J., Dowding, C. V., Molony, S. E., White, P. C. L., & Harris, S. (2007). Activity patterns of urban red foxes (Vulpes vulpes) reduce the risk of traffic-induced mortality. Behavioral Ecology, 18, 716-724.
Balakrishna, S., Batabyal, A., & Thaker, M. (2016). Dining in the city: Dietary shifts in Indian rock agamas across an urban-rural landscape. Journal of Herpetology, 50, 423-428.
Barlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., Castello, L., Economo, E. P., Ferreira, J., Guénard, B., Gontijo Leal, C., Isaac, V., Lees, A. C., Parr, C. L., Wilson, S. K., Young, P. J., & Graham, N. A. J. (2018). The future of hyperdiverse tropical ecosystems. Nature, 559, 517-526.
Barrett, K., Helms, B. S., Samoray, S. T., & Guyer, C. (2010). Growth patterns of a stream vertebrate differ between urban and forested catchments. Freshwater Biology, 55, 1628-1635.
Bateman, P. W., & Fleming, P. A. (2012). Big city life: Carnivores in urban environments. Journal of Zoology, 287, 1-23.
Beever, E. A., Hall, L. E., Varner, J., Loosen, A. E., Jason, B., Smith, F. A., Lawler, J. J., & Gahl, M. K. (2017). Behavioral flexibility as a mechanism for coping with climate change. Frontiers in Ecology and the Environment, 15, 299-308.
Bergmann, C. (1847). Ueber die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Gottinger Studein, 3, 595-708.
Biard, C., Brischoux, F., Meillère, A., Michaud, B., Nivière, M., Ruault, S., Vaugoyeau, M., & Angelier, F. (2017). Growing in cities: An urban penalty for wild birds? A study of phenotypic differences between urban and rural great tit chicks (Parus major). Frontiers in Ecology and Evolution, 5, 1-14.
Blackburn, H. B., Hobbs, N. T., Detling, J. K., Blackburn, H. B., Hobbs, N. T., & Detling, J. K. (2018). Nonlinear responses to food availability shape effects of habitat fragmentation on consumers. Ecology, 92, 98-107.
Blackburn, T. M., Gaston, K. J., & Loder, N. (1999). Geographic gradients in body size: A clarification of Bergmann's rule. Diversity and Distributions, 5, 165-174.
Blackburn, T. M., & Hawkins, B. A. (2004). Bergmann's rule and the mammal fauna of northern North America. Ecography, 27, 715-724.
Bókony, V., Kulcsár, A., & Liker, A. (2010). Does urbanization select for weak competitors in house sparrows? Oikos, 119, 437-444.
Boyle, M. J. W., Bishop, T. R., Luke, S. H., van Breugel, M., Evans, T. A., Pfeifer, M., Fayle, T. M., Hardwick, S. R., Lane-Shaw, R. I., Yusah, K. M., Ashford, I. C. R., Ashford, O. S., Garnett, E., Turner, E. C., Wilkinson, C. L., Chung, A. Y. C., & Ewers, R. M. (2021). Localised climate change defines ant communities in human-modified tropical landscapes. Functional Ecology, 35, 1094-1108.
Brans, K. I., Govaert, L., Engelen, J. M. T., Gianuca, A. T., Souffreau, C., & De Meester, L. (2017). Eco-evolutionary dynamics in urbanized landscapes: Evolution, species sorting and the change in zooplankton body size along urbanization gradients. Philosophical Transactions of the Royal Society B, 372, 20160030.
Brans, K. I., Jansen, M., Vanoverbeke, J., Tüzün, N., Stoks, R., & De Meester, L. (2017). The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size. Global Change Biology, 23, 5218-5227.
Brose, U., Dunne, J. A., Montoya, J. M., Petchey, O. L., Schneider, F. D., & Jacob, U. (2012). Climate change in size-structured ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2903-2912.
Brown, J. H. (2014). Why are there so many species in the tropics? Journal of Biogeography, 41, 8-22.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Towards a metabolic theory of ecology. Ecology, 85, 1771-1789.
Brown, J. S., Kotler, B. P., & Porter, W. P. (2017). How foraging allometries and resource dynamics could explain Bergmann's rule and the body-size diet relationship in mammals. Oikos, 126, 224-230.
Bujan, J., Yanoviak, S. P., & Kaspari, M. (2016). Desiccation resistance in tropical insects: Causes and mechanisms underlying variability in a Panama ant community. Ecology and Evolution, 6, 6282-6291.
Büntgen, U., Jenny, H., Galván, J. D., Piermattei, A., Krusic, P. J., & Bollmann, K. (2020). Stable body size of alpine ungulates: Ungulate body size. Royal Society Open Science, 7, 200196.
Bury, S., & Zajac, B. (2020). The loss of sexual size dimorphism in urban populations of a widespread reptile, the European grass snake Natrix natrix. Current Zoology, 66, 217-218.
Caizergues, A. E., Charmantier, A., Lambrechts, M. M., Perret, S., Demeyrier, V., Lucas, A., & Grégoire, A. (2021). An avian urban morphotype: How the city environment shapes great tit morphology at different life stages. Urban Ecosystem, 24, 929-941.
Carpenter, M., & Savage, A. M. (2021). Nutrient availability in urban food waste: Carbohydrate bias in the Philadelphia-Camden urban matrix. Journal of Urban Ecology, 7, 1-9.
Carrete, M., & Tella, J. L. (2011). Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS One, 6, e18859.
Chamaillé-Jammes, S., Massot, M., Aragón, P., & Clobert, J. (2006). Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Global Change Biology, 12, 392-402.
Chejanovski, Z. A., Avilés-Rodríguez, K. J., Lapiedra, O., Preisser, E. L., & Kolbe, J. J. (2017). An experimental evaluation of foraging decisions in urban and natural forest populations of Anolis lizards. Urban Ecosystem, 20, 1011-1018.
Chown, S. L., & Jaco Klok, C. (2003). Altitudinal body size clines: Latitudinal effects associated with changing seasonality. Ecography, 26, 445-455.
Cosgrove, A., & Berkelhammer, M. (2018). Downwind footprint of an urban heat island on air and lake temperatures. NPJ Climate and Atmospheric Science, 46, 1-10.
Crooks, K. R., & Soulé, M. E. (1999). Mesopredator release and avifaunal extinctions in a fragmented system. Nature, 400, 563-566.
Dahirel, M., De Cock, M., Vantieghem, P., & Bonte, D. (2019). Urbanization-driven changes in web building and body size in an orb web spider. Journal of Animal Ecology, 88, 79-91.
Darveau, C. A., Suarez, R. K., Andrews, R. D., & Hochachka, P. W. (2002). Allometric cascade as a unifying principle of body mass effects on metabolism. Nature, 417, 166-170.
Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12788-12793.
Davies, W. J. (2019). Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change. Ecology, 100, 1-11.
Davies, Z. G., Wilson, R. J., Coles, S., Thomas, C. D., Journal, S., Jan, N., Davies, Z. O. E. G., Wilson, R. J., Coles, S., & Thomast, C. D. (2009). Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. Journal of Animal Ecology, 75, 247-256.
Davison, P. J., & Field, J. (2017). Season length, body size, and social polymorphism: Size clines but not saw tooth clines in sweat bees. Ecological Entomology, 42, 768-776.
DeGregorio, B. A., Westervelt, J. D., Weatherhead, P. J., & Sperry, J. H. (2015). Indirect effect of climate change: Shifts in ratsnake behavior alter intensity and timing of avian nest predation. Ecological Modelling, 312, 239-246.
Desrochers, A. (2010). Morphological response of songbirds to 100 years of landscape change in North America. Ecology, 91, 1577-1582.
Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C., & Kosmopoulos, P. (2013). Investigation of urban microclimate parameters in an urban center. Energy and Buildings, 64, 1-9.
Faillace, C. A., Sentis, A., & Montoya, J. M. (2021). Eco-evolutionary consequences of habitat warming and fragmentation in communities. Biological Reviews, 5, 1-18.
Felton, A. M., Felton, A., Raubenheimer, D., Simpson, S. J., Foley, W. J., Wood, J. T., Wallis, I. R., & Lindenmayer, D. B. (2009). Protein content of diets dictates the daily energy intake of a free-ranging primate. Behavioral Ecology, 20, 685-690.
Fietz, J., & Weis-Dootz, T. (2012). Stranded on an Island: Consequences of forest fragmentation for body size variations in an arboreal mammal, the edible dormouse (Glis glis). Population Ecology, 54, 313-320.
Font, E., García-Roa, R., Pincheira-Donoso, D., & Carazo, P. (2019). Rethinking the effects of body size on the study of brain size evolution. Brain, Behavior and Evolution, 93, 182-195.
Franzén, M., Betzholtz, P. E., Pettersson, L. B., & Forsman, A. (2020). Urban moth communities suggest that life in the city favours thermophilic multi-dimensional generalists. Proceedings of the Royal Society B: Biological Sciences, 287, 20193014.
Gamba, P., & Herold, M. (2009). Global mapping of human settlement: Experiences, datasets, and prospects. CRC Press.
Gao, J., & O'Neill, B. C. (2020). Mapping global urban land for the 21st century with data-driven simulations and shared socioeconomic pathways. Nature Communications, 11, 1-12.
Garcia, T. S., Stacy, J., & Sih, A. (2004). Larval salamander response to UV radiation and predation risk: Color change and microhabitat use. Ecological Applications, 14, 1055-1064.
Gardner, J. L., Amano, T., Mackey, B. G., Sutherland, W. J., Clayton, M., & Peters, A. (2014). Dynamic size responses to climate change: Prevailing effects of rising temperature drive long-term body size increases in a semi-arid passerine. Global Change Biology, 20, 2062-2075.
Gardner, J. L., Amano, T., Peters, A., Sutherland, W. J., MacKey, B., Joseph, L., Stein, J., Ikin, K., Little, R., Smith, J., & Symonds, M. R. E. (2019). Australian songbird body size tracks climate variation: 82 species over 50 years. Proceedings of the Royal Society B: Biological Sciences, 286, 20192258. https://doi.org/10.1098/rspb.2019.2258
Gardner, J. L., Amano, T., Sutherland, W. J., Clayton, M., & Peters, A. (2016). Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology, 97, 786-795.
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: A third universal response to warming? Trends in Ecology and Evolution, 26, 285-291.
Gérard, M., Marshall, L., Martinet, B., & Michez, D. (2021). Impact of landscape fragmentation and climate change on body size variation of bumblebees during the last century. Ecography, 44, 255-264.
Gérard, M., Martinet, B., Maebe, K., Marshall, L., Smagghe, G., Vereecken, N. J., Vray, S., Rasmont, P., & Michez, D. (2020). Shift in size of bumblebee queens over the last century. Global Change Biology, 26, 1185-1195.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248-2251.
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319, 756-760.
Guralnick, R., Hantak, M. M., Li, D., & McLean, B. S. (2020). Body size trends in response to climate and urbanization in the widespread north American deer mouse, Peromyscus maniculatus. Scientific Reports, 10, 1-13.
Hall, J. M., & Warner, D. A. (2017). Body size and reproduction of a non-native lizard are enhanced in an urban environment. Biological Journal of the Linnean Society, 122, 860-871.
Han, J. Y., Baik, J. J., & Lee, H. (2014). Urban impacts on precipitation. Asia-Pacific Journal of Atmospheric Sciences, 50, 17-30.
Hantak, M. M., McLean, B. S., Li, D., & Guralnick, R. P. (2021). Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Communications Biology, 4, 1-10.
Heim, N. A., Knope, M. L., Schaal, E. K., Wang, S. C., & Payne, J. L. (2015). Cope's rule in the evolution of marine animals. Science, 347, 867-871.
Heiss, R. S., Clark, A. B., & Mcgowan, K. J. (2009). Growth and nutritional state of American crow nestlings vary between urban and rural habitats. Ecological Applications, 19, 829-839.
Henríquez, P., Donoso, D. S., & Grez, A. A. (2009). Population density, sex ratio, body size and fluctuating asymmetry of Ceroglossus chilensis (Carabidae) in the fragmented maulino forest and surrounding pine plantations. Acta Oecologica, 35, 811-818.
Hernández-Pacheco, R., Plard, F., Grayson, K. L., & Steiner, U. K. (2021). Demographic consequences of changing body size in a terrestrial salamander. Ecology and Evolution, 11, 174-185.
Hillaert, J., Hovestadt, T., Vandegehuchte, M. L., & Bonte, D. (2018). Size-dependent movement explains why bigger is better in fragmented landscapes. Ecology and Evolution, 8, 10754-10767.
Hillaert, J., Vandegehuchte, M. L., Hovestadt, T., & Bonte, D. (2018). Information use during movement regulates how fragmentation and loss of habitat affect body size. Proceedings of the Royal Society B: Biological Sciences, 285, 20180953.
Hone, D. W. E., Keesey, T. M., Pisani, D., & Purvis, A. (2005). Macroevolutionary trends in the Dinosauria: Cope's rule. Journal of Evolutionary Biology, 18, 587-595.
Hoy, S. R., Peterson, R. O., & Vucetich, J. A. (2018). Climate warming is associated with smaller body size and shorter lifespans in moose near their southern range limit. Global Change Biology, 24, 2488-2497.
Hughes, L. (2000). Biological consequences of global warming: Is the signal already apparent? Trends in Ecology and Evolution, 15, 56-61.
Iglesias, S., Tracy, C., Bedford, G., & Christian, K. (2012). Habitat differences in body size and shape of the Australian agamid lizard, lophognathus temporalis. Journal of Herpetology, 46, 297-303.
Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat Island effect across biomes in the continental USA. Remote Sensing of Environment, 114, 504-513.
IPCC. (2018). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, H. O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (pp. 17-20). World Meteorological Organization.
IPCC. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (pp. 14-17). Cambridge University Press.
IUCN Red List. (2021). IUCN summary statistics: Number of species listed in each IUCN red list category by country. International Union for the Conservation of Nature. Version 2021-2. https://www.iucnredlist.org/statistics
Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101, 233-249.
Jenkins, D. G., Brescacin, C. R., Duxbury, C. V., Elliott, J. A., Evans, J. A., Grablow, K. R., Hillegass, M., Lyon, B. N., Metzger, G. A., Olandese, M. L., Pepe, D., Silvers, G. A., Suresch, H. N., Thompson, T. N., Trexler, C. M., Williams, G. E., Williams, N. C., & Williams, S. E. (2007). Does size matter for dispersal distance? Global Ecology and Biogeography, 16, 415-425.
Jennette, M. A., Snodgrass, J. W., & Forester, D. C. (2019). Variation in age, body size, and reproductive traits among urban and rural amphibian populations. Urban Ecosystem, 22, 137-147.
Jessop, T. S., Smissen, P., Scheelings, F., & Dempster, T. (2012). Demographic and phenotypic effects of human mediated trophic subsidy on a large Australian lizard (Varanus varius): Meal ticket or last supper? PLoS One, 7, e34069.
Jin, M., Dickinson, R. E., & Zhang, D. L. (2005). The footprint of urban areas on global climate as characterized by MODIS. Journal of Climate, 18, 1551-1565.
Jung, K., & Kalko, E. K. V. (2010). Where forest meets urbanization: Foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. Journal of Mammalogy, 91, 144-153.
Kark, S., Iwaniuk, A., Schalimtzek, A., & Banker, E. (2007). Living in the city: Can anyone become an “urban exploiter”? Journal of Biogeography, 34, 638-651.
Kelly, R. M., Friedman, R., & Santana, S. E. (2018). Primary productivity explains size variation across the pallid bat's western geographic range. Functional Ecology, 32, 1520-1530.
Kramer, M. G. (2013). Our built and natural environments: A technical review of the interactions among land use, transportation, and environmental quality (2nd ed., p. 148). US EPA.
Lauck, B. (2006). Fluctuating asymmetry of the frog Crinia signifera in response to logging. Wildlife Research, 33, 313-320.
Leonard, R. J., Wat, K. K. Y., McArthur, C., & Hochuli, D. F. (2018). Urbanisation and wing asymmetry in the western honey bee (Apis mellifera, Linnaeus 1758) at multiple scales. PeerJ, 2018, e5940.
Li, X., Zhou, Y., Eom, J., Yu, S., & Asrar, G. R. (2019). Projecting global urban area growth through 2100 based on historical time series data and future shared socioeconomic pathways. Earth's Future, 7, 351-362.
Liker, A., Papp, Z., Bókony, V., & Lendvai, Á. Z. (2008). Lean birds in the city: Body size and condition of house sparrows along the urbanization gradient. Journal of Animal Ecology, 77, 789-795.
Liu, J., & Niyogi, D. (2019). Meta-analysis of urbanization impact on rainfall modification. Scientific Reports, 9, 1-14.
Liu, Z., He, C., & Wu, J. (2016). The relationship between habitat loss and fragmentation during urbanization: An empirical evaluation from 16 world cities. PLoS One, 11, 1-17.
Lowry, H., Lill, A., & Wong, B. B. M. (2013). Behavioural responses of wildlife to urban environments. Biological Reviews, 88, 537-549.
Lundberg, S., & Persson, L. (1993). Optimal body size and resource density. Journal of Theoretical Biology, 164, 163-180.
Maklakova, A. A., Immler, S., Gonzalez-Voyer, A., Rönn, J., & Kolm, N. (2011). Brains and the city: Big-brained passerine birds succeed in urban environments. Biology Letters, 7, 730-732.
Marcotullio, P. J., Keßler, C., Quintero Gonzalez, R., & Schmeltz, M. (2021). Urban growth and heat in tropical climates. Frontiers in Ecology and Evolution, 9, 616626.
Martin, J. M., & Barboza, P. S. (2020). Decadal heat and drought drive body size of north American bison (Bison bison) along the Great Plains. Ecology and Evolution, 10, 336-349.
McClennen, N., Wigglesworth, R. R., & Anderson, S. H. (2001). The effect of suburban and agricultural development on the activity patterns of coyotes (Canis latrans). American Midland Naturalist, 146, 27-36.
McDiarmid, R. W. (1968). Populational variation in the frog genus Phrynohyas fitzinger in middle America. Contributions in Science, 134, 1-25.
McNab, B. K. (2010). Geographic and temporal correlations of mammalian size reconsidered: A resource rule. Oecologia, 164, 13-23.
Meillère, A., Brischoux, F., Parenteau, C., & Angelier, F. (2015). Influence of urbanization on body size, condition, and physiology in an urban exploiter: A multi-component approach. PLoS One, 10, 1-19.
Mennechez, G., & Clergeau, P. (2006). Effect of urbanisation on habitat generalists: Starlings not so flexible? Acta Oecologica, 30, 182-191.
Merckx, T., Kaiser, A., & Van Dyck, H. (2018). Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. Global Change Biology, 24, 3837-3848.
Merckx, T., Souffreau, C., Kaiser, A., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I., Cours, M., Dahirel, M., Debortoli, N., De Wolf, K., Engelen, J. M. T., Fontaneto, D., Gianuca, A. T., Govaert, L., Hendrickx, F., Higuti, J., Lens, L., Martens, K., … Van Dyck, H. (2018). Body-size shifts in aquatic and terrestrial urban communities. Nature, 558, 113-116.
Merckx, T., & Van Dyck, H. (2019). Urbanization-driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects. Global Ecology and Biogeography, 28, 1440-1455.
Messina, S., Costantini, D., Tomassi, S., Cosset, C. C. P., Benedick, S., Eens, M., & Edwards, D. P. (2021). Selective logging reduces body size in omnivorous and frugivorous tropical forest birds. Biological Conservation, 256, 109036.
Meyrier, E., Jenni, L., Bötsch, Y., Strebel, S., Erne, B., & Tablado, Z. (2017). Happy to breed in the city? Urban food resources limit reproductive output in Western jackdaws. Ecology and Evolution, 7, 1363-1374.
Miller, C. R., Latimer, C. E., & Zuckerberg, B. (2018). Bill size variation in northern cardinals associated with anthropogenic drivers across North America. Ecology and Evolution, 8, 4841-4851.
Millien, V., Kathleen Lyons, S., Olson, L., Smith, F. A., Wilson, A. B., & Yom-Tov, Y. (2006). Ecotypic variation in the context of global climate change: Revisiting the rules. Ecology Letters, 9, 853-869.
Miyashita, T., Shinkai, A., & Chida, T. (1998). The effects of forest fragmentation on web spider communities in urban areas. Biological Conservation, 86, 357-364.
Mundinger, C., Scheuerlein, A., & Kerth, G. (2021). Long-term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long-lived bat species. Proceedings of the Royal Society B: Biological Sciences, 288, 20210508.
Murray, M. H., Becker, D. J., Hall, R. J., & Hernandez, S. M. (2016). Wildlife health and supplemental feeding: A review and management recommendations. Biological Conservation, 204, 163-174.
Murray, M. H., Cembrowski, A., Latham, A. D. M., Lukasik, V. M., Pruss, S., & St Clair, C. C. (2015). Greater consumption of protein-poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human-wildlife conflict. Ecography, 38, 1235-1242.
Murray, M. H., Kidd, A. D., Curry, S. E., Hepinstall-Cymerman, J., Yabsley, M. J., Adams, H. C., Ellison, T., Welch, C. N., & Hernandez, S. M. (2018). From wetland specialist to hand-fed generalist: Shifts in diet and condition with provisioning for a recently urbanized wading bird. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20170100.
Nevo, E. (1973). Adaptive variation in size of cricket frogs. Ecology, 54, 1271-1281.
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520, 45-50.
Okamiya, H., Hayase, N., & Kusano, T. (2021). Increasing body size and fecundity in a salamander over four decades, possibly due to global warming. Biological Journal of the Linnean Society, 132, 634-642.
Oke, T. R. (1982). The energetic basis of the urban heat Island. Quarterly Journal of the Royal Meteorological Society, 108, 1-24.
Onley, I. R., Gardner, J. L., & Symonds, M. R. E. (2020). Spatial and temporal variation in morphology in Australian whistlers and shrike-thrushes: Is climate change causing larger appendages? Biological Journal of the Linnean Society, 130, 101-113.
Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S., & Martínez-Abraín, A. (2013). Ecological and evolutionary implications of food subsidies from humans. Ecology Letters, 16, 1501-1514.
Ottoni, I., de Oliveira, F. F. R., & Young, R. J. (2009). Estimating the diet of urban birds: The problems of anthropogenic food and food digestibility. Applied Animal Behaviour Science, 117, 42-46.
Ozgul, A., Tuljapurkar, S., Benton, T. G., Pemberton, J. M., Clutton-Brock, T. H., & Coulson, T. (2009). The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science, 325, 464-467.
Pattishall, A., & Cundall, D. (2018). Habitat use by synurbic watersnakes (Nerodia sipedon). Herpetologica, 65, 183-198.
Peñalver-Alcázar, M., Martínez-Solano, I., Sequeira, F., & Aragón, P. (2017). Sex-dependent implications of primary productivity and conspecific density on geographical body size variation in a newt: Disentangling local, large scale and genetic factors. Journal of Biogeography, 44, 2096-2108.
Pergams, O. R. W., & Lawler, J. J. (2009). Recent and widespread rapid morphological change in rodents. PLoS One, 4, e6452.
Plummer, K. E., Bearhop, S., Leech, D. I., Chamberlain, D. E., & Blount, J. D. (2013). Winter food provisioning reduces future breeding performance in a wild bird. Scientific Reports, 3, 1-6.
Polidori, C., Gutiérrez-Cánovas, C., Sánchez, E., Tormos, J., Castro, L., & Sánchez-Fernández, D. (2020). Climate change-driven body size shrinking in a social wasp. Ecological Entomology, 45, 130-141.
Poot-Báez, V., Medina-Hernández, R., Medina-Peralta, S., & Quezada-Euán, J. J. G. (2020). Intranidal temperature and body size of Africanized honey bees under heatwaves (Hymenoptera: Apidae). Apidologie, 51, 382-390.
Post, E., Stenseth, N. C., Langvatn, R., & Fromentin, J. M. (1997). Global climate change and phenotypic variation among red deer cohorts. Proceedings of the Royal Society B: Biological Sciences, 264, 1317-1324.
Putman, B. J., Gasca, M., Blumstein, D. T., & Pauly, G. B. (2019). Downsizing for downtown: Limb lengths, toe lengths, and scale counts decrease with urbanization in western fence lizards (Sceloporus occidentalis). Urban Ecosystems, 22, 1071-1081.
Raia, P., Carotenuto, F., Passaro, F., Fulgione, D., & Fortelius, M. (2012). Ecological specialization in fossil mammals explains Cope's rule. American Naturalist, 179, 328-337.
Ramirez, L., Diniz-Filho, J. A. F., & Hawkins, B. A. (2008). Partitioning phylogenetic and adaptive components of the geographical body-size pattern of New World birds. Global Ecology and Biogeography, 17, 100-110.
Richner, H. (1989). Habitat-specific growth and fitness in carrion crows (Corvus corone corone). British Ecological Society, 58, 427-440.
Ricklefs, R. (1983). Avian postnatal development. In D. Farner, J. King, & K. Parkes (Eds.), Avian biology (pp. 1-83). Academic Press.
Rodewald, A. D., Kearns, L. J., & Shustack, D. P. (2011). Anthropogenic resource subsidies decouple predator-prey relationships. Ecological Applications, 21, 936-943.
Roff, D. A. (2002). Life history evolution. Sinauer Associates.
Rohwer, V. G., Rohwer, Y., & Dillman, C. B. (2022). Declining growth of natural history collections fails future generations. PLoS Biology, 20, e3001613.
Rosenzweig, M. L. (1968a). Net primary productivity of terrestrial communities: Prediction from climatological data. The American Naturalist, 102, 67-74.
Rosenzweig, M. L. (1968b). The strategy of body size in mammalian carnivores. The American Midland Naturalist, 80, 299-315.
Ruiz, G., Rosenmann, M., Novoa, F. F., & Sabat, P. (2002). Hematological parameters and stress index in rufous-collared sparrows dwelling in urban environments. Condor, 104, 162-166.
Russ, A., Rüger, A., & Klenke, R. (2015). Seize the night: European blackbirds (Turdus merula) extend their foraging activity under artificial illumination. Journal of Ornithology, 156, 123-131.
Ryan, M. J., Latella, I. M., Giermakowski, J. T., Snell, H., Poe, S., Pangle, R. E., Gehres, N., Pockman, W. T., & McDowell, N. G. (2016). Too dry for lizards: Short-term rainfall influence on lizard microhabitat use in an experimental rainfall manipulation within a piñon-juniper. Functional Ecology, 30, 964-973.
Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L., & Symonds, M. R. E. (2021). Shape-shifting: Changing animal morphologies as a response to climatic warming. Trends in Ecology & Evolution, 36, 1-13.
Sadler, J. P., Small, E. C., Fiszpan, H., Telfer, M. G., & Niemelä, J. (2006). Investigating environmental variation and landscape characteristics of an urban-rural gradient using woodland carabid assemblages. Journal of Biogeography, 33, 1126-1138.
Salewski, V., Siebenrock, K. H., Hochachka, W. M., Woog, F., & Fiedler, W. (2014). Morphological change to birds over 120 years is not explained by thermal adaptation to climate change. PLoS One, 9, 1-14.
Sanchez-Ruiz, J. A., Ramírez, A., & Kelly, S. P. (2017). Decreases in the size of riparian orb webs along an urbanization gradient. Journal of Arachnology, 45, 248-252.
Santini, L., González-Suárez, M., Russo, D., Gonzalez-Voyer, A., von Hardenberg, A., & Ancillotto, L. (2019). One strategy does not fit all: Determinants of urban adaptation in mammals. Ecology Letters, 22, 365-376.
Schtickzelle, N., Joiris, A., Van Dyck, H., & Baguette, M. (2007). Quantitative analysis of changes in movement behaviour within and outside habitat in a specialist butterfly. BioMed Central Evolutionary Biology, 7, 1-15.
Schulte-Hostedde, A. I., Mazal, Z., Jardine, C. M., & Gagnon, J. (2018). Enhanced access to anthropogenic food waste is related to hyperglycemia in raccoons (Procyon lotor). Conservation Physiology, 6, 1-6.
Schuur, E. A. G. (2003). Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology, 84, 1165-1170.
Schwarz, N., Lautenbach, S., & Seppelt, R. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment, 115, 3175-3186.
Sejian, V., Bahadur, S., & Naqvi, S. M. K. (2014). Effect of nutritional restriction on growth, adaptation physiology and estrous responses in Malpura ewes. Animal Biology, 64, 189-205.
Shahmohamadi, P., Che-Ani, A. I., Maulud, K. N. A., Tawil, N. M., & Abdullah, N. A. G. (2011). The impact of anthropogenic heat on formation of urban heat Island and energy consumption balance. Urban Studies Research, 2011, 1-9.
Shepherd, J. M. (2005). A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interactions, 9, 1-27.
Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1, 401-406.
Sheridan, J. A., Caruso, N. M., Apodaca, J. J., & Rissler, L. J. (2018). Shifts in frog size and phenology: Testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming. Ecology and Evolution, 8, 1316-1327.
Sheridan, J. A., Mendenhall, C. D., & Yambun, P. (in review). Temperature and precipitation interact to impact Borneo frog size. Ecology and Evolution.
Snell-Rood, E. C., & Wick, N. (2013). Anthropogenic environments exert variable selection on cranial capacity in mammals. Proceedings of the Royal Society B: Biological Sciences, 280, 20131384. https://doi.org/10.1098/rspb.2013.1384
Sol, D., Bacher, S., Reader, S. M., & Lefebvre, L. (2008). Brain size predicts the success of mammal species introduced into novel environments. American Naturalist, 172, S63-S71.
Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., & Lefebvre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the United States of America, 102, 5460-5465.
Sol, D., Griffin, A. S., Bartomeus, I., & Boyce, H. (2011). Exploring or avoiding novel food resources? The novelty conflict in an invasive bird. PLoS One, 6, e19535.
Stanley, T. R., Clark, R. W., Fisher, R. N., Rochester, C. J., Root, S. A., Lombardo, K. J., & Ostermann-Kelm, S. D. (2020). Changes in capture rates and body size among vertebrate species occupying an insular urban habitat reserve. Conservation Science and Practice, 2, 1-15.
Sutherland, G. D., Harestad, A. S., Price, K., & Lertzman, K. P. (2000). Scaling of natal dispersal distances in terrestrial birds and mammals. Ecology and Society, 4, 16.
Taylor, P. D., & Merriam, G. (1995). Wing morphology of a forest damselfly is related to landscape structure. Oikos, 73, 43-48.
Theodorou, P., Baltz, L. M., Paxton, R. J., & Soro, A. (2020). Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evolutionary Applications, 14, 1-16.
Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S., & Packer, C. (2017). Future threats to biodiversity and pathways to their prevention. Nature, 546, 73-81.
Tomassini, A., Colangelo, P., Agnelli, P., Jones, G., & Russo, D. (2014). Cranial size has increased over 133 years in a common bat, Pipistrellus kuhlii: A response to changing climate or urbanization? Journal of Biogeography, 41, 944-953.
Tscharntke, T., & Brandl, R. (2004). Plant-insect interactions in fragmented landscapes. Annual Review of Entomology, 49, 405-430.
Tseng, M., Kaur, K. M., Soleimani Pari, S., Sarai, K., Chan, D., Yao, C. H., Porto, P., Toor, A., Toor, H. S., & Fograscher, K. (2018). Decreases in beetle body size linked to climate change and warming temperatures. Journal of Animal Ecology, 87, 647-659.
Tuff, K. T., Glidden, C. K., Melbourne, B. A., Meyers, J. A., Nix, H. A., Sarre, S. D., & Davies, K. F. (2019). Shrinking skinks: Lizard body size declines in a long-term forest fragmentation experiment. Landscape Ecology, 34, 1395-1409.
United Nations Department of Economics and Social Affairs, Population Division. (2019). Probabilistic population projections rev. 1 based on the world population prospects 2019. http://population.un.org/wpp/
Van Gils, J. A., Lisovski, S., Lok, T., Meissner, W., Ozarowska, A., De Fouw, J., Rakhimberdiev, E., Soloviev, M. Y., Piersma, T., & Klaassen, M. (2016). Climate change: Body shrinkage due to arctic warming reduces red knot fitness in tropical wintering range. Science, 352, 819-821.
Ward, K., Lauf, S., Kleinschmit, B., & Endlicher, W. (2016). Heat waves and urban heat islands in Europe: A review of relevant drivers. Science of the Total Environment, 569-570, 527-539.
Weeks, B. C., Willard, D. E., Zimova, M., Ellis, A. A., Witynski, M. L., Hennen, M., & Winger, B. M. (2020). Shared morphological consequences of global warming in north American migratory birds. Ecology Letters, 23, 316-325.
Weller, B., & Ganzhorn, J. U. (2004). Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient. Basic and Applied Ecology, 5, 193-201.
Wilson, R. J., Brooks, S. J., & Fenberg, P. B. (2019). The influence of ecological and life history factors on ectothermic temperature-size responses: Analysis of three Lycaenidae butterflies (lepidoptera). Ecology and Evolution, 9, 10305-10316.
Winchell, K. M., Briggs, D., & Revell, L. J. (2019). The perils of city life: Patterns of injury and fluctuating asymmetry in urban lizards. Biological Journal of the Linnean Society, 126, 276-288.
Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12, 1-10.
Wolfe, A. K., Bateman, P. W., & Fleming, P. A. (2018). Does urbanization influence the diet of a large snake? Current Zoology, 64, 311-318.
Wonglersak, R., Fenberg, P. B., Langdon, P. G., Brooks, S. J., & Price, B. W. (2020). Temperature-body size responses in insects: A case study of British Odonata. Ecological Entomology, 45, 795-805.
Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. (2005). Body size in ecological networks. Trends in Ecology and Evolution, 20, 402-409.
Yuan, Z., Wang, Y., Xu, J., & Wu, Z. (2021). Effects of climatic factors on the net primary productivity in the source region of Yangtze River, China. Scientific Reports, 11, 1-11.
Zeleňáková, M., Purcz, P., Hlavatá, H., & Blištan, P. (2015). Climate change in urban versus rural areas. Procedia Engineering, 119, 1171-1180.
Zhou, D., Zhao, S., Zhang, L., Sun, G., & Liu, Y. (2015). The footprint of urban heat Island effect in China. Scientific Reports, 5, 2-12.